Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No role for simian virus 40 in human pleural mesotheliomas

24.09.2004


Mesothelioma is an aggressive cancer of the chest cavity that kills about 2000 people a year in the United States. Seventy to eighty percent of patients with this rare cancer have had exposure to asbestos. It has also been proposed that simian virus 40 (SV40), a contaminant in some polio vaccines administered in the 1950’s and 1960’s, might be a cause. However, studies reporting the detection of SV40 DNA in human tumors (including mesotheliomas, and also some lymphomas, brain cancers, and bone cancers) have not consistently yielded the same results when repeated by other groups. This has fueled an ongoing debate over laboratory methods and the strength of the association of SV40 with these tumors.



A study, published in the September 25 issue of Lancet, calls into question this proposed link between SV40 and pleural mesothelioma and provides a possible explanation for the discrepancies in the results obtained by different groups. Researchers at Memorial Sloan-Kettering Cancer Center (MSKCC) used several independent methods to detect SV40 DNA, SV40 RNA, and SV40 proteins in human pleural mesothelioma samples and found no evidence for a significant role for SV40 in human mesotheliomas. Unexpectedly, they found that the SV40 DNA fragments detected in some assays were not derived from genuine SV40 in the tissue samples but from SV40 DNA fragments engineered into common laboratory plasmid vectors used in molecular biology research. This source of SV40 DNA fragments may be unrecognized, leading to misinterpretation of assay results as indicating the presence of genuine SV40 in human tumors. Their findings are a caution to other researchers to be vigilant in avoiding these technical errors when planning future studies with SV40.

"Because SV40 was a recognized contaminant of some polio and adenovirus vaccines in the 50’s and early 60’s, its potential to cause cancer in humans has been a source of intense debate since the apparent detection of SV40 DNA in some human tumors was first reported," explained Fernando Lopez-Rios, M.D., of the Department of Pathology and the study’s lead author. "An important aspect of our study was that the availability of frozen mesothelioma tumor samples allowed us to search for SV40 RNA (an expected product of functional SV40 DNA), which has never been studied in a large series of mesotheliomas, and to show that it is completely absent."


Their study presents multiple lines of evidence against the proposed link between SV40 and human mesotheliomas. As part of their ongoing research into the biology of human pleural mesothelioma, this team of MSKCC investigators searched for SV40 DNA, RNA, or protein in frozen tissue samples from 71 human pleural mesotheliomas. According to the study, the methodology used by most researchers for the detection of SV40 DNA is associated with a high risk of false positive results. Therefore, the authors propose that data on SV40 in human tumors need to be carefully re-examined.

"Our previous work on mesothelioma showed that about 80 percent of tumors have lost both copies of the tumor suppressor gene designated p16 or CDKN2A, and this led us to ask whether SV40 infection might be a possible mechanism in the remaining 20 percent," said Marc Ladanyi, M.D., Director, Diagnostic Molecular Pathology Laboratory, and the study’s senior author. "But instead we found no evidence for SV40 in these tumors and our experiments show for the first time how the assays commonly used to detect SV40 DNA in human tumors are uniquely prone to false-positive results. We hope these results will hasten progress on this deadly cancer."

Joanne Nicholas | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>