Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollutant causes delayed flowering in plants

24.09.2004


Biologists have discovered that the air pollutant nitric oxide acts as a plant hormone to delay flowering in plants. The scientists discovered that while plants produce their own internal nitric oxide to regulate flowering, they are also influenced by external concentrations of the chemical.



The scientists said that although their findings are basic in nature, they suggest that the massive amounts of nitric oxide emitted as air pollutants from burning fossil fuels could affect the critical process of plant flowering. Since the decision to flower is so critical to reproduction, a delay in flowering could have important impacts on ecosystems, both plant and animal, they said.

The researchers, led by Duke University biologist Zhen-Ming Pei, published their findings in the Sept. 24, 2004, issue of the journal Science. Co-lead authors were Yikun He and Ru-Hang Tang from Duke. Other co-authors were Yi Hao, Robert Stevens, Charles Cook, Sun Ahn, Liufang Jing, Zhongguang Yang, Longen Chen, Fabio Fiorani and Robert Jackson, all of Duke; and Fangqing Guo and Nigel Crawford from the University of California at San Diego. The research was funded by the National Science Foundation and Duke University.


"The floral decision signaling pathway in plants has been studied for many, many years because the decision to flower is so critical to reproduction," Pei said. "And it was known that some of these pathways integrate external environmental signals, such as daily and seasonal changes in light, while others are autonomous pathways that act independently of external cues.

"However, nobody knew that nitric oxide was involved in these pathways. And nobody knew that plants would be affected by external concentrations of nitric oxide, as might be caused by air pollution." Such biochemical pathways are networks of protein enzymes that make up the signaling machinery that controls the flowering process.

"While our work is very much at a very detailed molecular level, I would bet that these findings have large-scale ecological implications regarding the effects of air pollution on flowering. It is entirely possible that global pollution by oxides of nitrogen could delay plant flowering worldwide," Pei said.

Pei and his colleagues began their studies by exposing the seedlings of the mustard plant, scientific name Arabidopsis, to a chemical that produced nitric oxide. The researchers found that such exposure enhanced the vegetative growth of the plants and significantly delayed flowering in a dose-dependent manner.

Arabidopsis is a widely used model plant in plant biology research, and its genetics and biology have been thoroughly studied. "This finding that externally applied nitric oxide delayed flowering was a big surprise," Pei said. "It had been known that internal nitric oxide regulated growth in plants. And, it was known that stimuli, such as drought, salt stress and pathogen infection, induced internal nitric oxide production. But it was not expected that external nitric oxide affected the flowering pathway."

To explore how the molecular machinery of the plant was affected by nitric oxide, the researchers identified mutant plants that produced high levels of nitric oxide and were hypersensitive to the chemical. They found that these plants were also late-flowering. Conversely, mutant plants that produced lower nitric oxide levels flowered early.

Genetic studies of such mutants revealed that nitric oxide appeared to affect genes that control both the environmentally sensitive pathways and the autonomous pathways that lead to flowering, Pei said. Thus, he said, nitric oxide may "integrate" both external and internal cues into the decision to flower.

Further studies, Pei said, will concentrate on understanding the nitric-oxide-controlled regulatory machinery in the flowering decision. Also, he said, the researchers will seek the receptor that nitric oxide plugs into in plant cells -- an activation process like a key fitting a lock. "This study will validate the concept that nitric oxide is an important plant hormone," Pei said. "It provides the hard evidence that is needed to demonstrate nitric oxide’s role, since flowering is such a fundamental, well-studied process."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>