Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain’s ’storehouse’ for memory molecules identified

24.09.2004


Neurobiologists have pinpointed the molecular storehouse that supplies the neurotransmitter receptor proteins used for learning-related changes in the brain. They also found hints that the same storage compartments, called recycling endosomes, might be more general transporters for ’memory molecules’ used to remodel the neuron to strengthen its connections with its neighbors.



They said their finding constitutes an important step toward understanding the machinery by which neurons alter their connections to establish preferred signaling pathways in the process of laying down new memories.

Understanding such machinery could also offer clues to how it might degenerate in aging and disease to degrade learning and memory, they said. The researchers, led by Michael Ehlers of the Duke University Medical Center and Julie Kauer of Brown University, published their findings in the September 24, 2004, issue of the journal Science. Other co-authors on the paper were Mikyoung Park of Duke, and Esther Penick, Jeffrey Edwards of Brown. Their research was supported by the National Institutes of Health.


In their studies, the researches sought to understand how neurotransmitter receptors in the depths of the neuron are carried to the surface -- a process called exocytosis. These receptors are proteins that are activated by bursts of signaling chemicals, called neurotransmitters, launched from another, transmitting neuron. The connection between transmitting and receiving neurons is called the synapse.

Such activation across the synapse triggers a nerve impulse in the receiving neuron. The "receiving stations" for neurotransmitters are mushroom-shaped dendritic spines that festoon the surface of neurons. Changes in the strength of a neuron’s response to such chemical signals depend on how many receptors are present on the dendritic spine surface. And the strength of such connections is key to establishing the neural pathways through the brain that are the basis of learning and memory.

The particular receptors that the researchers studied are AMPA receptors, named for the chemical substance that activates them. When the number of receptors on a neuronal surface increases, the enhanced sensitivity of neurons to neurotransmitter signaling is known as long-term potentiation (LTP). "There had been good evidence that the increase in receptor number was due to exocytosis and that AMPA receptors were coming from somewhere inside the neuron," said Ehlers. "But it was completely unknown what that intracellular source or compartment was."

The candidates for such transport included several different kinds of sac-like carriers called endosomes and vesicles, which are known to enclose and transport various molecular cargos in the cell. Depending on the type of carrier, the cargo may be carried to cellular "garbage dumps" where they are destroyed, or recycled back to the cell surface. "We knew that endosomes existed near dendritic spines and that AMPA receptors get internalized and transported through various endosomal compartments in dendrites," said Ehlers. Finally, he said, the movement of AMPA receptors had to be regulated by activation by yet another receptor, called the NMDA receptor, that is known to trigger LTP in neurons.

In their studies, the researchers concentrated particularly on "recycling endosomes" that transport "used" receptors back to the neuronal surface after they have been drawn into the neuron. To study the function of recycling endosomes, they introduced mutations in cultured rat neurons and in brain tissue that specifically disrupted transport of cargo in and out of recycling endosomes.

They found that this disruption specifically trapped AMPA receptors in the recycling endosomes. Also, the mutations specifically prevented the insertion of new AMPA receptors into the dendritic membrane. And, it specifically blocked the insertion of receptors that would be triggered by NMDA activation -- meaning that it affected long-term potentiation.

To their surprise, the researchers also found that triggering LTP not only affected insertion of AMPA receptors, but the generalized recycling of molecular cargo to the dendritic surface. "We’ve always concentrated on AMPA receptors because they were easy to measure," said Ehlers. "But we wondered whether there is more to membrane trafficking during LTP than just AMPA receptors. After the initial stimulus that triggers insertion of AMPA receptors, there is overall spine growth and changes in synaptic structure and architecture. But the link between the activating stimulus and the spine changes has been a mystery. So, we thought that if recycling endosomes were supplying receptors, perhaps they’re supplying additional components for spine growth," he said.

When the researchers stimulated LTP in the brain slices, they found an overall enhancement of transport of cargo from recycling endosomes to the neuronal membrane. "We think it’s a key point that when you provide an LTP-inducing stimulus, you get an enhanced recycling not just of AMPA receptors but of all recycling cargo," said Ehlers. "So, it seems to be a mechanism that’s operating on a specific organelle -- the recycling endosome -- rather than on a specific molecule, the AMPA receptor. So, it will be an intriguing question to ask, what other cargo molecules are mobilized during LTP." Thus, said Ehlers, the machinery of the recycling endosome " is a very appealing unifying mechanism for the various forms of plasticity."

"Researchers have been rather daunted by the fact there is a diversity of molecules and mechanisms involved in LTP. And they’ve wondered if there was any way to find a convergence point to explain how they all control the single outcome of LTP. So, while there may be hundreds of molecules, there may be just one organelle -- the recycling endosome -- involved in transporting them. Our findings hint that this endosome might just provide the convergence point for understanding LTP," he said.

Besides basic understanding of LTP, such studies could have important clinical implications, said Ehlers. "Aging and neurodegeneration has been associated with enlarged and expanded endosomes in neuronal dendrites," said Ehlers. "It’s been unclear how this happens or its functional effect. "And there’s been an association of aging and neurodegeneration with altered synaptic function and plasticity. So, there may be a link between an endosomal dysfunction and aberrant synaptic plasticity that happens later in life," he said.

"Identifying recycling endosomes as a source of receptors and other plasticity proteins opens up new possibilities for therapeutic approaches to diseases of memory and cognition," said Ehlers.

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>