Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fossil sheds light on old mystery

24.09.2004


Scientists from IVPP, Field Museum and University of Chicago describe a new Chinese reptile from the Triassic and propose a unique feeding method



The well-preserved fossil of a newly discovered reptile species may explain the function of the extremely long neck for which some protorosaurs are known – a feature that has puzzled scientists for decades. The Protorosauria is an order of diverse predatory reptiles that lived as far back as 280 million years ago. Scientists have never been able to figure out the function of the extremely long neck that characterizes some species of this group, including Tanystropheus longobardicus, which was discovered in the 1850s.

About twice as long as its trunk, Tanystropheus’ neck has 12 vertebrae along which extend elongated cervical ribs. Years ago, scientists concluded that the long, stiff neck was more or less a consequence of growth patterns rather than a specific functional adaptation. The new species of protorosaur, however, provides additional clues and suggests that the long neck in these animals may have been part of a unique and very effective method for capturing prey in water.


Dinocephalosaurus orientalis, which means "terrible-headed lizard from the Orient," was recently discovered in southern China. It has a neck made up of 25 vertebrae, again with elongated cervical ribs extending along them. In an embargoed article to be published in Science on September 24, 2004, the authors describe how the neck may have been used to capture prey.

"This is important research because we have finally explained the functional purpose of this strange, long neck," said Olivier Rieppel, PhD, a co-author of the Science paper and chair of geology and curator of fossil amphibians and reptiles at Chicago’s Field Museum. "It allowed an almost perfect strike at prey, which usually consisted of elusive fish and squid."

Prey in water is slippery, and any movement toward it not only alerts the prey of an attack but also creates a pressure wave that could push the prey away. Fish and some turtles combat these factors with suction feeding, i.e., pulling the prey into their months by rapidly expanding the mouth cavity.

Crocodiles and alligators use a different approach. They catch prey with their flat head and pincer jaws, which allow them (when feeding in water) to strike laterally, cutting through the water while minimizing the force that pushes the prey away.

Dinocephalosaurus apparently took yet another approach. When it thrust its head forward to capture prey, the ribs along its neck would splay outward. This would increase the diameter of the esophagus, creating a suction force that would swallow the pressure wave created by the lunging head, along with the prey.

"The unusual neck morphology of Dinocephalosaurus would have allowed it to suction feed, a feeding mode previously unknown for fossil aquatic reptiles," said Michael LaBarbera, PhD, professor of organismal biology and anatomy at the University of Chicago. "But suction feeding in Dinocephalosaurus was different from suction feeding in any other animal. Rather than expand the volume of its mouth to suck in prey, Dinocephalosaurus expanded the volume of its throat, in many ways a more effective approach."

In addition, the long neck allowed Dinocephalosaurus to draw near its prey stealthily so it would have less of a chance of being detected. "To a fish in murky water, Dinocephalosaurus’ head would have initially looked like another animal its own size, but by the time the fish was able to see Dinocephalosaurus’ body, it would already have been lunch," Dr. LaBarbera said.

"Dinocephalosaurus sheds new light on the evolution of protorosaurs and the functional morphology of these long-necked marine reptiles," said Chun Li, lead author and assistant research fellow at the Institute of Vertebrate Paleontology and Paleoanthropology of the Chinese Academy of Sciences in Beijing.

"When Tanystropheus, the first long-necked protorosaur to be found, was discovered in Europe in the 1850s it raised so many questions that it was called a ’biomechanical nightmare,’ " Chun added. "And it generated fiery discussion among scientists as recently as the 1980s." Dinocephalosaurus is 230 million years old and dates from the Triassic. It has 25 cervical vertebrae to Tanystropheus’ 12, which might have made its neck a little more flexible. "These two species are not very closely related, which demonstrates that this strange, long neck evolved twice within the group of protorosaurs," Dr. Rieppel said.

Dinocephalosaurus’ neck measures 1.7 meters, while its trunk is less than 1 meter long. Some of its cervical ribs, which are connected to neck vertebrae, span several intervertebral joints. The ribs increase in length from the front of the neck to the back of the neck, bridging more joints near the base of the neck than near the head. Unlike most protorosaurs, Dinocephalosaurus was fully aquatic, although it might have laid its eggs on land.

Greg Borzo | EurekAlert!
Further information:
http://www.fieldmuseum.org
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>