Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fossil sheds light on old mystery

24.09.2004


Scientists from IVPP, Field Museum and University of Chicago describe a new Chinese reptile from the Triassic and propose a unique feeding method



The well-preserved fossil of a newly discovered reptile species may explain the function of the extremely long neck for which some protorosaurs are known – a feature that has puzzled scientists for decades. The Protorosauria is an order of diverse predatory reptiles that lived as far back as 280 million years ago. Scientists have never been able to figure out the function of the extremely long neck that characterizes some species of this group, including Tanystropheus longobardicus, which was discovered in the 1850s.

About twice as long as its trunk, Tanystropheus’ neck has 12 vertebrae along which extend elongated cervical ribs. Years ago, scientists concluded that the long, stiff neck was more or less a consequence of growth patterns rather than a specific functional adaptation. The new species of protorosaur, however, provides additional clues and suggests that the long neck in these animals may have been part of a unique and very effective method for capturing prey in water.


Dinocephalosaurus orientalis, which means "terrible-headed lizard from the Orient," was recently discovered in southern China. It has a neck made up of 25 vertebrae, again with elongated cervical ribs extending along them. In an embargoed article to be published in Science on September 24, 2004, the authors describe how the neck may have been used to capture prey.

"This is important research because we have finally explained the functional purpose of this strange, long neck," said Olivier Rieppel, PhD, a co-author of the Science paper and chair of geology and curator of fossil amphibians and reptiles at Chicago’s Field Museum. "It allowed an almost perfect strike at prey, which usually consisted of elusive fish and squid."

Prey in water is slippery, and any movement toward it not only alerts the prey of an attack but also creates a pressure wave that could push the prey away. Fish and some turtles combat these factors with suction feeding, i.e., pulling the prey into their months by rapidly expanding the mouth cavity.

Crocodiles and alligators use a different approach. They catch prey with their flat head and pincer jaws, which allow them (when feeding in water) to strike laterally, cutting through the water while minimizing the force that pushes the prey away.

Dinocephalosaurus apparently took yet another approach. When it thrust its head forward to capture prey, the ribs along its neck would splay outward. This would increase the diameter of the esophagus, creating a suction force that would swallow the pressure wave created by the lunging head, along with the prey.

"The unusual neck morphology of Dinocephalosaurus would have allowed it to suction feed, a feeding mode previously unknown for fossil aquatic reptiles," said Michael LaBarbera, PhD, professor of organismal biology and anatomy at the University of Chicago. "But suction feeding in Dinocephalosaurus was different from suction feeding in any other animal. Rather than expand the volume of its mouth to suck in prey, Dinocephalosaurus expanded the volume of its throat, in many ways a more effective approach."

In addition, the long neck allowed Dinocephalosaurus to draw near its prey stealthily so it would have less of a chance of being detected. "To a fish in murky water, Dinocephalosaurus’ head would have initially looked like another animal its own size, but by the time the fish was able to see Dinocephalosaurus’ body, it would already have been lunch," Dr. LaBarbera said.

"Dinocephalosaurus sheds new light on the evolution of protorosaurs and the functional morphology of these long-necked marine reptiles," said Chun Li, lead author and assistant research fellow at the Institute of Vertebrate Paleontology and Paleoanthropology of the Chinese Academy of Sciences in Beijing.

"When Tanystropheus, the first long-necked protorosaur to be found, was discovered in Europe in the 1850s it raised so many questions that it was called a ’biomechanical nightmare,’ " Chun added. "And it generated fiery discussion among scientists as recently as the 1980s." Dinocephalosaurus is 230 million years old and dates from the Triassic. It has 25 cervical vertebrae to Tanystropheus’ 12, which might have made its neck a little more flexible. "These two species are not very closely related, which demonstrates that this strange, long neck evolved twice within the group of protorosaurs," Dr. Rieppel said.

Dinocephalosaurus’ neck measures 1.7 meters, while its trunk is less than 1 meter long. Some of its cervical ribs, which are connected to neck vertebrae, span several intervertebral joints. The ribs increase in length from the front of the neck to the back of the neck, bridging more joints near the base of the neck than near the head. Unlike most protorosaurs, Dinocephalosaurus was fully aquatic, although it might have laid its eggs on land.

Greg Borzo | EurekAlert!
Further information:
http://www.fieldmuseum.org
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>