Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible pain relief with morphine-free poppy

23.09.2004


Morphine-free poppy



A handful of genes in a morphine free poppy could hold the key to producing improved pain management pharmaceuticals. Norman, the ’no-morphine’ poppy, is superior to morphine producing poppies as it produces thebaine and oripavine – compounds preferred by industry in the manufacture of alternative high value pain-killers.

CSIRO’s Dr Phil Larkin, and The Australian National University’s Anthony Millgate and Dr Barry Pogson have been working with Tasmanian Alkaloids to investigate Norman the morphine-free poppy. "The genes we found behaved differently in Norman compared to standard morphine producing poppies and were consistently associated with the blockage in morphine synthesis and with the accumulation of thebaine and oripavine," Dr Larkin says.


"Understanding the genes responsible for the production of morphine, thebaine and oripavine is an important step in further developing poppies that are tailored to produce alternative pharmaceuticals."

The morphine free poppy variant, TOP1, was first discovered in 1995 by Tasmanian Alkaloids then released as Norman for commercial production in 1997 in Tasmania where it is now widely grown. "Norman created substantial industry growth when there was a surplus of traditional products, such as morphine, allowing us to supply raw materials for the manufacture of other pharmaceutical ingredients," says Tasmanian Alkaloids’ Manager of Agricultural Research, Dr Tony Fist.

Tasmania already grows over 40 per cent of the world’s legal poppy crops and Norman will ensure Tasmania stays an international leader in pharmaceutical development from poppy compounds.

This research is supported by voluntary contributions from industry with matched funding for R&D from the Australian Government through HAL and is a collaboration between CSIRO Plant Industry, The Australian National University, Tasmanian Alkaloids, Institute for Plant Biochemistry (Germany) and the University Halle (Germany).

Sophie Clayton | EurekAlert!
Further information:
http://www.csiro.au

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>