Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible pain relief with morphine-free poppy

23.09.2004


Morphine-free poppy



A handful of genes in a morphine free poppy could hold the key to producing improved pain management pharmaceuticals. Norman, the ’no-morphine’ poppy, is superior to morphine producing poppies as it produces thebaine and oripavine – compounds preferred by industry in the manufacture of alternative high value pain-killers.

CSIRO’s Dr Phil Larkin, and The Australian National University’s Anthony Millgate and Dr Barry Pogson have been working with Tasmanian Alkaloids to investigate Norman the morphine-free poppy. "The genes we found behaved differently in Norman compared to standard morphine producing poppies and were consistently associated with the blockage in morphine synthesis and with the accumulation of thebaine and oripavine," Dr Larkin says.


"Understanding the genes responsible for the production of morphine, thebaine and oripavine is an important step in further developing poppies that are tailored to produce alternative pharmaceuticals."

The morphine free poppy variant, TOP1, was first discovered in 1995 by Tasmanian Alkaloids then released as Norman for commercial production in 1997 in Tasmania where it is now widely grown. "Norman created substantial industry growth when there was a surplus of traditional products, such as morphine, allowing us to supply raw materials for the manufacture of other pharmaceutical ingredients," says Tasmanian Alkaloids’ Manager of Agricultural Research, Dr Tony Fist.

Tasmania already grows over 40 per cent of the world’s legal poppy crops and Norman will ensure Tasmania stays an international leader in pharmaceutical development from poppy compounds.

This research is supported by voluntary contributions from industry with matched funding for R&D from the Australian Government through HAL and is a collaboration between CSIRO Plant Industry, The Australian National University, Tasmanian Alkaloids, Institute for Plant Biochemistry (Germany) and the University Halle (Germany).

Sophie Clayton | EurekAlert!
Further information:
http://www.csiro.au

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>