Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ewing’s sarcoma : Discovery of a "link" in tumor growth

23.09.2004


When cells express the abnormal protein… In these cells, the blue, green and yellow labeling respectively corresponds to the nucleus, the abnormal protein EWS/FLI-1 and the protein IGFBP-3. In the cells where EWS/FLI-1 is present (green labeling), IGFBP-3 is absent (no yellow labeling), confirming that EWS/FLI1 prevents expression of the IGFBP-3 gene. A. Prieur/Institut Curie


To develop new therapeutic approaches to cancer, it is essential to understand the long and extremely complex process that underlies it, in other words the various stages of cancer development from the initial mutation to the tumor. Having already identified the alteration that leads to Ewing’s sarcoma, a bone cancer which afflicts young people, an Inserm team at the Institut Curie has recently used a combination of novel techniques to show that there 86 deregulated genes in these tumors. One of these genes, a new “link” in the development of Ewing’s sarcoma, could be used as a therapeutic target. These discoveries were published in the August 2004 issue of Molecular and Cellular Biology.

Cancer results from the proliferation of abnormal cells in the body. The trigger is an alteration in the genetic material of a single cell, in certain genes that regulate vital processes (division, differentiation, apoptosis, repair). However, a single mutation is not enough to transform a health cell into a cancer cell. Rather it is a succession of genetic accidents that results in uncontrolled cells that accumulate and lead to tumor formation.

Few cancers have a simple molecular signature – a specific mutation that leads to tumor growth. In Ewing’s sarcoma, a malignant tumor of the bone which affects children, teenagers and young adults, this molecular signature has been discovered thanks to a close collaboration between physicians and researchers at the Institut Curie, the internationally renowned reference center for the study and treatment of Ewing’s sarcoma.



Olivier Delattre(1) and his group have identified and characterized this mutation: it arises from an accidental exchange of genetic material between two chromosomes. This leads to the formation of a mutated gene that produces an abnormal protein called EWS/FLI-1 (see box overleaf). To understand the growth of Ewing’s sarcoma, Delattre and colleagues are now studying the effects of EWS/FLI-1 on the cellular machinery. They use an original approach in which the technique of RNA interference(2) is used to “switch off” the mutated gene. The abnormal protein is therefore no longer produced. Using DNA chips, they have studied how other genes are affected by the absence of the abnormal protein.

When a "brake" on proliferation is released…

With this combination of innovative techniques, Delattre and colleagues have identified 86 genes whose expression is altered in the absence of the abnormal protein. They have paid particular attention to one of these genes – the IGFBP-3 gene – whose expression is greatly reduced in tumor cells but which is again expressed normally when the altered protein is absent. The protein produced by the IGFBP-3 gene is known to block one of the most important cellular messengers, insulin-like growth factor 1. IGF-1 controls several fundamental mechanisms such as cellular proliferation and apoptosis (cell death). Overexpression of IGF-1 has, moreover, been implicated in certain cancers.

The Institut Curie researchers have thus shown in Ewing’s sarcoma that the altered protein prevents expression of the IGFBP-3 gene. As a consequence, IGF-1 is no longer "blocked" and so emits a continuous signal ordering the cells to proliferate. IGFBP-3 plays a role upstream in this signaling pathway and could be targeted therapeutically to block IGF-1-induced abnormal cellular proliferation.

Olivier Delattre and his team at the Institut Curie have therefore discovered a new “link” in the growth of Ewing’s sarcoma. Through better comprehension of the cascades of deregulations specific to each tumor, it will be possible to develop new therapeutic strategies that are better targeted and hence more effective.

Catherine Goupillon | alfa
Further information:
http://www.curie.fr
http://mcb.asm.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>