Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Plant Cells Protect Themselves--from Themselves

23.09.2004


Colgate University biology professor Ken Belanger and an interdisciplinary team of researchers from Washington University in St. Louis, Pacific Northwest National Laboratories, and Saitama University are collaborating to better understand how plants protect themselves from naturally occurring but potentially damaging high-energy molecules. Their findings, said Belanger, could one day help farmers boost crop yields and shield their harvests from extreme environmental conditions, and may have even larger implications for aging and cancer research.

The group—which is currently composed of three biologists, one systems engineer, and one computer scientist, and will also soon include Colgate and Washington University undergraduate students—is one of just six in the nation to receive a five-year, $5 million Frontiers in Integrative Biological Research (FIBR) grant from the National Science Foundation (NSF). Colgate’s portion of the funding will total about $60,000 each year.

The study will examine how plant cells defend against high-energy molecules that are produced as by-products of everyday metabolic processes, including photosynthesis and respiration. Called oxygen free radicals, these and other oxidizing molecules can harm DNA and proteins, impairing a cell’s ability to function. Oxidative damage is believed to be one of the primary causes of aging in humans and can potentially cause cells to become cancerous.



To prevent oxidative damage, cells have evolved and developed natural compounds and processes that protect themselves from the harmful effects of oxygen free radicals. The compounds are produced from genes that are “switched on” when damaging molecules become more abundant and “switched back off” when cellular conditions are less stressful, said Belanger. A better comprehension of how plant cells respond to such circumstances could help scientists develop environmentally-resistant crops, and may even provide insights into how human cells limit the oxidative damage that leads to aging.

The Washington University group will examine the regulation of the genes in moss cells and in a model vascular plant called Arabidopsis, while the Colgate team will look at such survival mechanisms in yeast cells.

Colgate’s share of the grant, Belanger said, will be used to finance work in the lab and send three undergraduate students each summer for the duration of the award to Washington University to do three weeks of coursework and seven weeks of hands-on research. The funding will cover the participants’ living expenses and travel costs, and provide them with a stipend as well.

Belanger added that the grant will subsidize just one biology major; the other two will be students of other science disciplines, such as computer science, chemistry, mathematics, or physics. The goal, he explained, is to show the students how real-world lab collaborations work, and to introduce them to systems biology, an emerging field that takes a broader approach to looking at biological changes and interactions. “My hope is that they will use methods from each of their disciplines to answer some key biological questions,” said Belanger. “Of course, I’m also hoping that they’ll bring back what they learn in St. Louis and help foster collaboration between the various sciences at Colgate.”

“From a practical standpoint, this program will expand our students’ knowledge of molecular biology and lab protocols,” said Lyle Roelofs, Colgate’s provost and dean of the faculty. “More broadly, it will provide our undergraduates with the opportunity to work shoulder-to-shoulder with an international, interdisciplinary research team that is pushing the frontiers of knowledge. It will be a great opportunity for them to explore some possible careers and collaborate with some of the world’s best scientists at the same time.”

According to the NSF, the FIBR program brings together scientists from many areas of biology and related fields to draw upon advances in genomics, ecology, enhanced information technology, and other areas to address significant under-studied or unanswered questions in biology. This year’s six FIBR projects involve dozens of investigators from 15 U.S. states and scientists supported by several other countries. Each undertaking integrates varied expertise from several universities and research institutes.

Members of the faculty at Colgate excel at engaging undergraduates in their research, tying classroom learning to applied experiences. Recent student-faculty collaborations have touched on a wide range of topics, including female artists of the Southwest, hydrogeology, corporate governance reform in Asia, sacred music, the warming of Antarctica, and the effects of gestures on cognition.

| newswise
Further information:
http://www.colgate.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>