Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine microbes focus of major gift to MIT

22.09.2004


Marine microbes shape the chemical composition of the Earth’s oceans and atmosphere, yet we know essentially nothing about them. Now, thanks to major grants from the Gordon and Betty Moore Foundation, MIT researchers aim to learn dramatically more about some of the most important organisms on the globe.



Professors Penny Chisholm and Ed DeLong are among the four Moore Foundation Investigators in Marine Science selected nationally. Each inaugural investigator will receive almost $5.5 million over the next five years through the foundation’s new marine microbiology initiative, which was established to "generate new knowledge regarding the composition, function and ecological role of microbial communities in the world’s oceans," according to foundation literature.

President Charles M. Vest applauded the Moore Foundation for its decision to make this major commitment to understanding the genetic inventory of microbial ecosystems in the ocean and the role they play in critical planetary processes. "The Marine Microbiology initiative will generate important new knowledge for the future of our planet and will establish the Gordon and Betty Moore Foundation as a leader in funding scientific research in this emerging field," said Vest.


Dean of Engineering Thomas L. Magnanti said the work of Chisholm and DeLong exemplifies MIT’s strong commitment to environmental sciences and engineering, and to research and education that crosses conventional disciplinary boundaries to address complex problems of great importance. "It is very gratifying that the foundation has chosen Penny and Ed as Moore Investigators," said Magnanti.

Underwater Microbes

Chisholm’s research over the past decade has focused on the ecology of Prochlorococcus, the smallest known photosynthetic cell and the most abundant microbe in the sea. A biological oceanographer, she was a part of the team that first discovered the organism in 1985. "I am thrilled about the Moore funding because it allows us to take more risks in our research and relieves us of the annual grant-writing pressure. But I am even more excited about the visibility the Moore marine microbiology initiative will give our field. The introduction of genomic analyses to marine microbial systems has triggered an exciting paradigm shift in biological oceanography, and the Moore initiative will play a key role in this," said Chisholm, the Lee and Geraldine Martin Professor of Environmental Studies, who holds appointments in the Department of Civil and Environmental Engineering (CEE) and the Department of Biology.

DeLong, who joined the MIT faculty in July after seven years at the Monterey Bay Aquarium Research Institute, is well known for inventing new approaches for studying microbes. "The broad activities of my lab are all centered about the use of new technologies, especially genomic technologies, to learn more about the natural microbial world. The Moore support represents an incredible, enabling boost to our efforts, and that of the field as a whole. This is a voyage of discovery, and is contributing to both knowledge creation as well as applied tools and technologies for biomedicine, biotechnology and bioengineering," said DeLong, who holds appointments in CEE and the Biological Engineering Division. "One great thing about being here at MIT is that a lot of new technologies needing further development for environmental/ecological applications are all front and center on the research and development agenda here. These include genomics, computational biology, systems biology, sensor technology, and ocean engineering."

MIT has a history of research in the environmental sciences through programs like the Earth System Initiative (ESI), which Chisholm co-directs with Professor Kip Hodges of the Department of Earth, Atmospheric and Planetary Sciences. ESI was launched in 2002 to better understand how the Earth functions from the molecular to the global scale or, in the case of marine microbes, from the genomic to the ecosystem level.

To that end Chisholm, DeLong and CEE Associate Professor Martin Polz, who also specializes in marine microbiology, are forging alliances with researchers from across MIT to plumb the secrets of the ocean’s tiniest denizens. (Polz is an investigator with the Woods Hole Center for Oceans and Human Health, which was formed in May with funding from the National Science Foundation and the National Institute of Environmental Health Sciences, one of the National Institutes of Health.)

The Gordon and Betty Moore Foundation launched its 10-year marine microbiology initiative in April. Funding strategies include supporting Moore Foundation Investigators, linking scientists in related fields, establishing intern programs and supporting select research projects that will affect ocean science as a whole. "It is the foundation’s goal not only to support the top scientists in marine microbiology, but to stimulate close collaborations between these scientists to accelerate even further progress in this key area of ocean research," said David Kingsbury, director of marine science for the foundation.

The foundation was established in November 2000 by Intel co-founder Gordon Moore and his wife Betty to create positive outcomes for future generations. Its principal areas of concern are environmental conservation, science, higher education, and the San Francisco Bay Area.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

nachricht When fish swim in the holodeck
22.08.2017 | University of Vienna

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>