Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decipher genetic code of biothreat pathogen

21.09.2004


Highly regulated virulence genes and genomic instability found in the horse pathogen, burkholderia mallei



More than 2,400 years after Hippocrates first described the symptoms of glanders, scientists have deciphered the genetic code of the ancient pathogen that causes the horse disease: Burkholderia mallei.

The study found that B. mallei, a highly evolved pathogen that has been deployed in the past as a biological weapon, has an extremely regulated set of virulence genes and an unstable genome that may explain the bacterium’s ability to thwart the immune responses of its host animals – mainly horses, mules and donkeys. "The combination of virulence genes and genomic instability may explain why some scientists consider this to be the ultimate bacterial pathogen," says William Nierman, the first author of the study, which is being published in the Proceedings of the National Academy of Sciences (PNAS).


As part of the study, scientists used DNA microarrays to better understand the functions of B. mallei virulence genes. Nierman, an investigator at The Institute for Genomic Research (TIGR), said the new study, along with a report on the related bacterium B. pseudomallei published in the same issue of PNAS, "has dramatically increased our understanding of the biology and pathogenicity of these very sophisticated pathogens."

Even though the symptoms of glanders have been known since the description by Hippocrates in 425 B.C., scientists have yet to develop a vaccine that is effective against this highly infectious equine disease. When humans are infected, treatment requires a long-term regimen of multiple antibiotics. A test developed by German scientists after B. mallei was isolated in 1882 greatly improved the early detection of the disease in horses. Glanders was eradicated in the United States by the 1930s.

Cultures of B. mallei were used as biological weapons during the U.S. Civil War, World War I and World War II. In addition, there have been reports that the Soviet Union weaponized the pathogen and possibly used it during the Soviet occupation of Afghanistan.

TIGR collaborated on the B. mallei study with a research team led by David DeShazer, a glanders expert with the U.S. Army Medical Research Institute for Infectious Diseases (USAMRIID) in Frederick, MD. The parallel study of B. pseudomallei, which causes the disease melioidosis in humans, was conducted by a team led by scientists at the Wellcome Trust Sanger Institute in the United Kingdom.

The B. mallei study was funded by the National Institute of Allergy and Infectious Diseases (NIAID), which is part of the National Institutes of Health. Following up the genome analysis, TIGR is now examining several other strains and isolates of B. mallei and B. pseudomallei under an NIAID microbial sequencing contract. "Using the tools of comparative genomics, scientists will be able to deepen the understanding of the molecular reasons why these related pathogens have such different impacts, in terms of their target hosts and their pathogenicity," says TIGR President Claire Fraser, the study’s senior author.

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>