Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decipher genetic code of biothreat pathogen

21.09.2004


Highly regulated virulence genes and genomic instability found in the horse pathogen, burkholderia mallei



More than 2,400 years after Hippocrates first described the symptoms of glanders, scientists have deciphered the genetic code of the ancient pathogen that causes the horse disease: Burkholderia mallei.

The study found that B. mallei, a highly evolved pathogen that has been deployed in the past as a biological weapon, has an extremely regulated set of virulence genes and an unstable genome that may explain the bacterium’s ability to thwart the immune responses of its host animals – mainly horses, mules and donkeys. "The combination of virulence genes and genomic instability may explain why some scientists consider this to be the ultimate bacterial pathogen," says William Nierman, the first author of the study, which is being published in the Proceedings of the National Academy of Sciences (PNAS).


As part of the study, scientists used DNA microarrays to better understand the functions of B. mallei virulence genes. Nierman, an investigator at The Institute for Genomic Research (TIGR), said the new study, along with a report on the related bacterium B. pseudomallei published in the same issue of PNAS, "has dramatically increased our understanding of the biology and pathogenicity of these very sophisticated pathogens."

Even though the symptoms of glanders have been known since the description by Hippocrates in 425 B.C., scientists have yet to develop a vaccine that is effective against this highly infectious equine disease. When humans are infected, treatment requires a long-term regimen of multiple antibiotics. A test developed by German scientists after B. mallei was isolated in 1882 greatly improved the early detection of the disease in horses. Glanders was eradicated in the United States by the 1930s.

Cultures of B. mallei were used as biological weapons during the U.S. Civil War, World War I and World War II. In addition, there have been reports that the Soviet Union weaponized the pathogen and possibly used it during the Soviet occupation of Afghanistan.

TIGR collaborated on the B. mallei study with a research team led by David DeShazer, a glanders expert with the U.S. Army Medical Research Institute for Infectious Diseases (USAMRIID) in Frederick, MD. The parallel study of B. pseudomallei, which causes the disease melioidosis in humans, was conducted by a team led by scientists at the Wellcome Trust Sanger Institute in the United Kingdom.

The B. mallei study was funded by the National Institute of Allergy and Infectious Diseases (NIAID), which is part of the National Institutes of Health. Following up the genome analysis, TIGR is now examining several other strains and isolates of B. mallei and B. pseudomallei under an NIAID microbial sequencing contract. "Using the tools of comparative genomics, scientists will be able to deepen the understanding of the molecular reasons why these related pathogens have such different impacts, in terms of their target hosts and their pathogenicity," says TIGR President Claire Fraser, the study’s senior author.

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>