Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circulating Mononuclear Cells in the Obese Found to be in Proinflammatory State, Contributing to Diabetes and Heart Disease

21.09.2004


Endocrinologists from the University at Buffalo are providing one more link in the growing chain of evidence pointing to chronic cellular inflammation as the precursor of heart disease and diabetes.



In research published in the Sept 21 issue of Circulation, the researchers show for the first time that circulating mononuclear cells -- the body’s monocytes (the largest type of white blood cell) and lymphocytes -- exist in a proinflammatory state in obese persons known to be at increased risk of developing diabetes, heart disease or both. "These cells are creating a lot of nuisance in the obese," said Paresh Dandona, M.D., Ph.D., head of UB’s Division of Endocrinology, Diabetes and Metabolism and senior author on the study. "They enter the artery and set up atherosclerosis. They activate fat cells to produce more proinflammatory factors. They interfere with insulin signaling, causing insulin resistance. They even enter the brain." Husam Ghanim, Ph.D., research associate, is first author on the study.

The good news, said Dandona, is that, based on these findings, the status of mononuclear cells from one blood sample could serve as an easy early-warning system for the risk of developing insulin resistance and circulatory problems.


The research was conducted using fasting blood samples from 16 normal-weight subjects with an average body mass index (BMI) of 22.6 and from 16 obese subjects with an average BMI of 40. All participants had similar glucose levels and were taking no anti-inflammatory medication. The research was conducted at the Diabetes-Endocrinology Center of Western New York located in Kaleida Health’s Milliard Fillmore-Gates Hospital.

Mononuclear cells were isolated, and proinflammatory and anti-inflammatory factors within the nucleus and the cell were assayed. The researchers also calculated an insulin-resistance index for each participant, using a standard formula.

Results showed that measures of proinflammatory factors were significantly higher in blood samples from obese subjects than the average weight subjects, while levels of factors that normally inhibit inflammation were significantly lower. "This proinflammatory state may contribute to insulin resistance," said Dandona, "because the cytokines produced may interfere with insulin action." The index of insulin resistance in the obese subjects was nearly three times higher, on average, than that of the normal subjects, findings showed.

To remedy the inflammation, persons must either change their diet or take medication or both, Dandona said. His laboratory currently is conducting studies with obese subjects to determine how much these remedies are able to reduce cellular inflammation.

In addition to Dandona, UB Distinguished Professor in the Department of Medicine, UB School of Medicine and Biomedical Sciences, and Ghanim, researchers involved in the study, all from the Division of Endocrinology, Diabetes and Metabolism, were Ahmad Aljada, Ph.D., Deborah Hofmeyer, Tufail Syed, M.D., and Priya Mohanty, M.D.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>