Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanilla may have a future in sickle cell treatment

21.09.2004


In addition to its popular role in flavoring ice cream, fudge and cake frosting, vanilla may have a future use as a medicine. Recent laboratory research has strengthened the possibility that a form of vanilla may become a drug to treat sickle cell disease.


After specially bred mice received a compound that turns into vanilla in the body, they survived five times longer than mice that did not receive the chemical. All the mice had been subjected to low oxygen pressure, a condition that causes their red blood cells to form the hazardous sickle shape. Results of the study, led by research hematologist Toshio Asakura, M.D., Ph.D., of The Children’s Hospital of Philadelphia, appeared in the June 2004 issue of the British Journal of Haematology.

It had been known for 30 years that vanillin, the compound that gives the vanilla bean its flavor, protects red blood cells with sickle cell disease from assuming the sickle shape that obstructs blood vessels. However, this effect previously occurred only in test tubes, because vanillin normally breaks down in the digestive tract before reaching the bloodstream.

Scientists at Medinox, a San Diego-based biotechnology company, developed a variant of vanillin called MX-1520, chemically modifying it to resist degradation by the digestive system. MX-1520 is a prodrug--a compound that becomes an active drug (in this case, vanillin) in the body.



Dr. Asakura and his team tested MX-1520 in the NIH-sponsored Sickle Cell Disease Reference Laboratory that he directs at The Children’s Hospital of Philadelphia. The researchers used transgenic sickle mice--animals with red blood cells containing human sickle hemoglobin, similar to the defective blood cells in people with sickle cell disease. The researchers found that most of the MX-1520 turned into vanillin in the mice, where it interacted with sickle hemoglobin and inhibited the formation of rigid sickled cells.

Sickle cell disease affects 80,000 patients in the United States and millions more throughout the world, predominantly in Africa, India, the Middle East and Mediterranean countries. Most of those affected by sickle cell disease are of African descent. A gene mutation causes red blood cells to become stiff and sickle-shaped, damaging and obstructing blood vessels. The disease may cause severe pain, stroke, anemia, life-threatening infections, and damage to the lungs and other organs.

Currently, only one drug, hydroxurea, is approved in the U.S. for treating sickle cell disease, but it is not effective for all patients, and it has adverse side effects such as suppressing bone marrow activity. "Clearly, we need to develop safer and more effective drugs for sickle cell disease," said Dr. Asakura. "By evaluating a variety of potential drugs, we hope to contribute to developing a range of drugs for different stages and different complications of the disease."

The results of his study, says Dr. Asakura, indicate that further study of the vanillin prodrug MX-1520 is warranted, but he stressed that the compound has not yet been studied in any patients. Patients with sickle cell disease should also be aware that this study does not imply that eating food products currently containing vanilla will benefit patients, because most vanilla is destroyed in the stomach and does not reach the bloodstream.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>