Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Vanilla may have a future in sickle cell treatment


In addition to its popular role in flavoring ice cream, fudge and cake frosting, vanilla may have a future use as a medicine. Recent laboratory research has strengthened the possibility that a form of vanilla may become a drug to treat sickle cell disease.

After specially bred mice received a compound that turns into vanilla in the body, they survived five times longer than mice that did not receive the chemical. All the mice had been subjected to low oxygen pressure, a condition that causes their red blood cells to form the hazardous sickle shape. Results of the study, led by research hematologist Toshio Asakura, M.D., Ph.D., of The Children’s Hospital of Philadelphia, appeared in the June 2004 issue of the British Journal of Haematology.

It had been known for 30 years that vanillin, the compound that gives the vanilla bean its flavor, protects red blood cells with sickle cell disease from assuming the sickle shape that obstructs blood vessels. However, this effect previously occurred only in test tubes, because vanillin normally breaks down in the digestive tract before reaching the bloodstream.

Scientists at Medinox, a San Diego-based biotechnology company, developed a variant of vanillin called MX-1520, chemically modifying it to resist degradation by the digestive system. MX-1520 is a prodrug--a compound that becomes an active drug (in this case, vanillin) in the body.

Dr. Asakura and his team tested MX-1520 in the NIH-sponsored Sickle Cell Disease Reference Laboratory that he directs at The Children’s Hospital of Philadelphia. The researchers used transgenic sickle mice--animals with red blood cells containing human sickle hemoglobin, similar to the defective blood cells in people with sickle cell disease. The researchers found that most of the MX-1520 turned into vanillin in the mice, where it interacted with sickle hemoglobin and inhibited the formation of rigid sickled cells.

Sickle cell disease affects 80,000 patients in the United States and millions more throughout the world, predominantly in Africa, India, the Middle East and Mediterranean countries. Most of those affected by sickle cell disease are of African descent. A gene mutation causes red blood cells to become stiff and sickle-shaped, damaging and obstructing blood vessels. The disease may cause severe pain, stroke, anemia, life-threatening infections, and damage to the lungs and other organs.

Currently, only one drug, hydroxurea, is approved in the U.S. for treating sickle cell disease, but it is not effective for all patients, and it has adverse side effects such as suppressing bone marrow activity. "Clearly, we need to develop safer and more effective drugs for sickle cell disease," said Dr. Asakura. "By evaluating a variety of potential drugs, we hope to contribute to developing a range of drugs for different stages and different complications of the disease."

The results of his study, says Dr. Asakura, indicate that further study of the vanillin prodrug MX-1520 is warranted, but he stressed that the compound has not yet been studied in any patients. Patients with sickle cell disease should also be aware that this study does not imply that eating food products currently containing vanilla will benefit patients, because most vanilla is destroyed in the stomach and does not reach the bloodstream.

John Ascenzi | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>