Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanilla may have a future in sickle cell treatment

21.09.2004


In addition to its popular role in flavoring ice cream, fudge and cake frosting, vanilla may have a future use as a medicine. Recent laboratory research has strengthened the possibility that a form of vanilla may become a drug to treat sickle cell disease.


After specially bred mice received a compound that turns into vanilla in the body, they survived five times longer than mice that did not receive the chemical. All the mice had been subjected to low oxygen pressure, a condition that causes their red blood cells to form the hazardous sickle shape. Results of the study, led by research hematologist Toshio Asakura, M.D., Ph.D., of The Children’s Hospital of Philadelphia, appeared in the June 2004 issue of the British Journal of Haematology.

It had been known for 30 years that vanillin, the compound that gives the vanilla bean its flavor, protects red blood cells with sickle cell disease from assuming the sickle shape that obstructs blood vessels. However, this effect previously occurred only in test tubes, because vanillin normally breaks down in the digestive tract before reaching the bloodstream.

Scientists at Medinox, a San Diego-based biotechnology company, developed a variant of vanillin called MX-1520, chemically modifying it to resist degradation by the digestive system. MX-1520 is a prodrug--a compound that becomes an active drug (in this case, vanillin) in the body.



Dr. Asakura and his team tested MX-1520 in the NIH-sponsored Sickle Cell Disease Reference Laboratory that he directs at The Children’s Hospital of Philadelphia. The researchers used transgenic sickle mice--animals with red blood cells containing human sickle hemoglobin, similar to the defective blood cells in people with sickle cell disease. The researchers found that most of the MX-1520 turned into vanillin in the mice, where it interacted with sickle hemoglobin and inhibited the formation of rigid sickled cells.

Sickle cell disease affects 80,000 patients in the United States and millions more throughout the world, predominantly in Africa, India, the Middle East and Mediterranean countries. Most of those affected by sickle cell disease are of African descent. A gene mutation causes red blood cells to become stiff and sickle-shaped, damaging and obstructing blood vessels. The disease may cause severe pain, stroke, anemia, life-threatening infections, and damage to the lungs and other organs.

Currently, only one drug, hydroxurea, is approved in the U.S. for treating sickle cell disease, but it is not effective for all patients, and it has adverse side effects such as suppressing bone marrow activity. "Clearly, we need to develop safer and more effective drugs for sickle cell disease," said Dr. Asakura. "By evaluating a variety of potential drugs, we hope to contribute to developing a range of drugs for different stages and different complications of the disease."

The results of his study, says Dr. Asakura, indicate that further study of the vanillin prodrug MX-1520 is warranted, but he stressed that the compound has not yet been studied in any patients. Patients with sickle cell disease should also be aware that this study does not imply that eating food products currently containing vanilla will benefit patients, because most vanilla is destroyed in the stomach and does not reach the bloodstream.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>