Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Fossil genes’ reveal how life sheds form and function

21.09.2004


Reading the fossil record, a paleontologist can peer into evolutionary history and see the surface features that plants and animals and, occasionally, microbes have left behind.



Now, scouring the genome of a Japanese yeast, scientists have found a trackway of fossil genes in the making, providing a rare look at how an organism, in response to the demands of its environment, has changed its inner chemistry and lost the ability to metabolize a key sugar.

The finding is a snapshot of evolution at work showing, at the most fundamental level, how traits and features are discarded by virtually all forms of life when they are no longer needed. "Many people think evolution is always happening in a forward direction," that new features are just tacked on, says Sean B. Carroll, a professor of molecular biology at the Howard Hughes Medical Institute at the University of Wisconsin-Madison. "The other side of the coin is that we lose things. Losses as well as gains make up the story of evolution."


Writing Sept. 20, in the Proceedings of the National Academy of Sciences, Carroll and colleagues Chris Todd Hittinger and Antonis Rokas describe the discovery of a set of seven genes caught in the act of fossilization.

In the Japanese yeast, known to scientists as Saccharomyces kudriavzevii, the Wisconsin scientists found the decaying genes that, when intact, are all functionally related and make up a pathway that permits the organism to convert the sugar galactose to energy.

The same pathway, among the most studied in biology, exists not only in yeasts, but also in virtually all other microbes, as well as plants and animals, including humans. Their sole function is devoted to the utilization of galactose, suggesting that the yeast experienced an ecological shift that somehow removed galactose from the organism’s menu, thereby making the galactose-processing genes obsolete.

The relic genes, according to Hittinger, are "full of holes," where numerous DNA bases - the building blocks of all genes - have been edited out through mutation to terminate the physiological message they were responsible for transmitting along the pathway. "Genes become fossilized if there is no use for them," says Rokas. "If you relax the pressure on the genes to zero, mutations will begin to accumulate. This steady bombardment of mutations will erase the genes over time."

However, there is a window of preservation before the genes are wiped completely away, leaving relics as diagnostic as any fossil bone and providing scientists with important clues to biological functions discarded as an organism adapts to its environment.

Indeed, probing the genomes of three other species of yeast that are unable to metabolize galactose, the Wisconsin scientists found the genetic pathway almost completely absent from all three, with only a single remaining gene marking the pathway like a faded signpost. "Evolution repeats itself," Carroll says. "What we see is that three or four times, these genes have been junked in different species. The process of sweeping these genes away is more complete in these other species."

Relic genes, sometimes called pseudo-genes, have been found elsewhere, including humans. Fossil olfactory genes tell the story of how humans came to depend more on sight as color vision displaced a sense of smell that, in the distant past, was far superior to what humans enjoy today.

In the Japanese yeast, the seven fossil genes that make up the eroding pathway are "still in the same place (on the genome) they are in neighboring species," says Carroll. "What we have is a picture of an entire set of genes performing related functions becoming fossilized. "To see this, the change has to be relatively recent. Sometime in the last 5 to 10 million years the pressure (on these genes) started to relax," Carroll explains.

Sean B. Carroll | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>