Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double dealing receptor protein on tumors promotes cancer development in cell nucleus

21.09.2004


Researchers at The University of Texas M. D. Anderson Cancer Center now have evidence that receptors found on tumors that were believed to function only on the surface of cells can actually switch on genes inside a cell’s nucleus, thus promoting cancer development in two distinct ways.



They specifically found that HER-2 cell surface receptors, known to promote breast and other cancers when they allow too many growth signals to enter a cell, can actually travel into the nucleus and turn on a variety of genes, including COX-2, which also is associated with carcinogenesis.

The discovery, published in the September issue of the journal Cancer Cell, likely will revolutionize the way scientists think about membrane receptors, says the study’s lead author, Mien-Chie Hung, Ph.D., a professor in the Department of Molecular & Cellular Oncology. "For a number of years, researchers have found membrane receptors associated with cancer development in the nucleus of cells, but they believed these were just debris left over from the receptor’s primary job, which is to shuttle signals into a cell," says Hung. "Here we find that a receptor protein known to be important in one cancer pathway also can enter a cell’s nucleus to turn on genes associated with a different carcinogenesis pathway," he says. "Proof of the dual nature of these receptors may well change the nature of research associated with them and, possibly, treatment strategy."


The team of researchers revealed the double-dealing nature of the HER-2 protein receptor after they developed a new cloning and bioinformatics technique to track the path of the receptor. This technology, they say, can now be used by scientists to look for duplicitous behavior in other cell surface proteins.

They developed a method to remove the membrane and outer portion of a cancer cell so that little more than the nucleus was left, and then used an antibody that attached to the HER-2 protein to detect what the receptor protein was doing. They found that HER-2 did attach to a number of genes in the nucleus, one of which is the "promoter" region of the cyclooxygenase-2 (COX-2). In other words, HER-2 was activating the transcription of COX-2. "Each works in a completely different way, and no one thought that one could be regulating the other," Hung says.

Up to 30 percent of breast cancers "over-express" the HER-2 cell surface protein, which pushes the cell to grow. Over-expression of COX-2 does not allow a damaged cell to die and also is associated with cancer cell invasion and metastasis, he says.

Both also are targets for cancer treatments: the breast cancer drug Herceptin has proven beneficial in delaying progression in women whose tumors are HER-2 positive, and the use of non-steroidal anti-inflammatory drugs (NSAID), which slows down expression of COX-2 is being tested as a chemopreventive agent in people who are at high risk of developing certain cancers.

Hung says now that the technology has been developed, researchers can track a variety of membrane receptor tyrosine kinases that have been found inside the nucleus, many of them regulate a variety of cell functions, including proliferation, differentiation and survival. These include other epidermal growth factor receptors (EGFR), of which HER-2 is a member, the vascular epithelial growth factor (VEGF) receptors known to stimulate tumor angiogenesis, and insulin receptors, among many others. "Science is based on available technology," he says. "And now we can have a peephole into the nucleus that I believe will open up whole new avenues of research."

Heather Sessions | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>