Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double dealing receptor protein on tumors promotes cancer development in cell nucleus

21.09.2004


Researchers at The University of Texas M. D. Anderson Cancer Center now have evidence that receptors found on tumors that were believed to function only on the surface of cells can actually switch on genes inside a cell’s nucleus, thus promoting cancer development in two distinct ways.



They specifically found that HER-2 cell surface receptors, known to promote breast and other cancers when they allow too many growth signals to enter a cell, can actually travel into the nucleus and turn on a variety of genes, including COX-2, which also is associated with carcinogenesis.

The discovery, published in the September issue of the journal Cancer Cell, likely will revolutionize the way scientists think about membrane receptors, says the study’s lead author, Mien-Chie Hung, Ph.D., a professor in the Department of Molecular & Cellular Oncology. "For a number of years, researchers have found membrane receptors associated with cancer development in the nucleus of cells, but they believed these were just debris left over from the receptor’s primary job, which is to shuttle signals into a cell," says Hung. "Here we find that a receptor protein known to be important in one cancer pathway also can enter a cell’s nucleus to turn on genes associated with a different carcinogenesis pathway," he says. "Proof of the dual nature of these receptors may well change the nature of research associated with them and, possibly, treatment strategy."


The team of researchers revealed the double-dealing nature of the HER-2 protein receptor after they developed a new cloning and bioinformatics technique to track the path of the receptor. This technology, they say, can now be used by scientists to look for duplicitous behavior in other cell surface proteins.

They developed a method to remove the membrane and outer portion of a cancer cell so that little more than the nucleus was left, and then used an antibody that attached to the HER-2 protein to detect what the receptor protein was doing. They found that HER-2 did attach to a number of genes in the nucleus, one of which is the "promoter" region of the cyclooxygenase-2 (COX-2). In other words, HER-2 was activating the transcription of COX-2. "Each works in a completely different way, and no one thought that one could be regulating the other," Hung says.

Up to 30 percent of breast cancers "over-express" the HER-2 cell surface protein, which pushes the cell to grow. Over-expression of COX-2 does not allow a damaged cell to die and also is associated with cancer cell invasion and metastasis, he says.

Both also are targets for cancer treatments: the breast cancer drug Herceptin has proven beneficial in delaying progression in women whose tumors are HER-2 positive, and the use of non-steroidal anti-inflammatory drugs (NSAID), which slows down expression of COX-2 is being tested as a chemopreventive agent in people who are at high risk of developing certain cancers.

Hung says now that the technology has been developed, researchers can track a variety of membrane receptor tyrosine kinases that have been found inside the nucleus, many of them regulate a variety of cell functions, including proliferation, differentiation and survival. These include other epidermal growth factor receptors (EGFR), of which HER-2 is a member, the vascular epithelial growth factor (VEGF) receptors known to stimulate tumor angiogenesis, and insulin receptors, among many others. "Science is based on available technology," he says. "And now we can have a peephole into the nucleus that I believe will open up whole new avenues of research."

Heather Sessions | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>