Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strep bacteria uses a sword and shield to win battle against immune system

21.09.2004


A single gene called cylE within the important bacterial pathogen Group B Streptococcus (GBS), controls two factors that act together as a "sword" and "shield" to protect the bacteria from the killing effects of the immune system’s white blood cells, according to researchers at the University of California, San Diego (UCSD) School of Medicine.



GBS is the leading cause of serious bacterial infections such as meningitis and pneumonia in newborns and is increasingly recognized as a serious pathogen in adult populations, including the elderly, pregnant women and diabetics.

In studies with mice and human blood samples, published in the online edition of Proceedings of the National Academy of Sciences the week of September 20, 2004, the UCSD scientists demonstrated the protective roles of two cylE-encoded factors, one that creates the unusual orange pigmentation of GBS, and another that produces a toxin called hemolysin that kills immune system cells as they surround and attack the bacteria. These findings could lead to new therapeutic approaches that disarm the bacteria and allow the immune system to do its work.


"A crucial part of the body’s defense against bacterial pathogens are white blood cells known as neutrophils and macrophages, which are able to engulf and kill most bacteria" said lead author George Liu, M.D., Ph.D., a UCSD research fellow in pediatric infectious diseases. "We predicted that the GBS bacteria had a unique ability to avoid the killing by white blood cells."

This unique ability turned out to include both the killing effects of the hemolysin toxin, and previously unrecognized antioxidant properties of the GBS orange pigment.

A major weapon that white blood cells use to kill bacteria after engulfment is the production of lethal oxidants similar to peroxide and bleach. Interestingly, the cylE-dependent orange pigment belongs to the family of carotenoids, similar to the compounds that give color to vegetables such as tomatoes and carrots. The anitoxidant properties of food carotenoids have long been touted for their potential health benefits against aging, heart disease and cancer.

"Just as colorful vegetables with antioxidants are touted for their ability to protect us against aging or cancer, we discovered that the GBS bacteria is pulling the same trick to protect itself against our immune system," said the study’s senior author, Victor Nizet, M.D., associate professor, UCSD Division of Infectious Diseases, and an attending physician at Children’s Hospital San Diego.

The UCSD experiments confirmed the importance of the antioxidant role of the orange pigment, as mutant GBS without the cylE gene was 10 to 10,000 times more susceptible to white blood cell oxidants than the disease producing strain.

The new findings are based on previous research by the UCSD group and others, that showed cylE controls the production of hemolysin, as well as the orange pigmentation of the gene. Removal of this gene created a mutant strain of GBS that lacked the hemolysin toxin and was plain white in color. When tested in animal models, the mutant GBS strain was unable to produce serious infections. In the current study, the scientists showed that the mutant GBS strain was rapidly cleared from the bloodstream of experimental animals and more easily killed by purified human and mouse white blood cells.

The hemolysin toxin was the "sword" that poked holes throughout white blood cells, such that in many cases the GBS actually killed the immune cell before it could kill the bacteria. However, even when hemolysin production was inhibited, the GBS continued to survive the white blood cell attack. In additional experiments, the orange pigment was found to be the "shield" that protected the bacteria. Combined, the toxin and orange pigmentation made GBS a potent warrior against white blood cell defenses and consequently a much more lethal pathogen.

"Recognizing the importance of these two properties for GBS infection suggests that novel drug treatments or vaccines that block the hemolysin or disrupt pigment production may be quite effective. Essentially, such therapies could make the GBS bacteria susceptible to elimination by the normal immune system of the newborn infant," Nizet said.

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>