Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Key stimulator of colorectal cancer identified


A new research study identifies a molecule that promotes one of the most deadly cancers in humans and reveals the molecular mechanisms underlying the protective effects of nonsteroidal anti-inflammatory drugs (NSAIDS) against the disease. The research, published in the September issue of Cancer Cell, identifies potential targets for future therapeutics aimed at the prevention and treatment of cancer of the colon and rectum.

Colorectal cancer (CRC) is the second most common cause of death due to cancer for men and women in the United States It has been known for some time that NSAIDS and other cyclooxygenase (COX) inhibitors reduce the risk of CRC. However, the exact mechanisms of this protective action are unclear. PGE2 is a metabolite of COX that is elevated in CRC and has been implicated in disease development and progression. Peroxisome proliferator-activated receptor d (PPARd), a regulator of cell survival, has also been linked to CRC. Dr. Raymond N. DuBois from the Department of Medicine at Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center in Nashville, Tennessee and colleagues investigated whether the ability of PGE2 to promote CRC is dependent on PPARd.

The researchers found that PGE2 indirectly activates PPARd via a signaling pathway that promotes cell survival and polyp formation. Polyps are abnormal growths in the colon and rectum that are believed to be an early stage of CRC. In a mouse model system for studying polyp formation, PGE2 treatment induced an increase in the number and size of intestinal polyps. Importantly, this effect of PGE2 was not observed in these mice when they lack PPARd.

"Our results identify PPARd as a critical downstream mediator in PGE2-stimulated promotion of colorectal tumor growth," says Dr. DuBois. "They suggest that PPARd is an important pro-cancer factor in CRC, and that agents which stimulate PPARd may encourage abnormal cell growth in certain populations at risk for CRC. In addition, it is possible that blocking PPARd might prove useful for prevention and/or treatment of CRC."

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>