Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New anti-inflammatory strategy for cancer therapy identified

21.09.2004


A new strategy for cancer therapy, which converts the tumor-promoting effect of the immune system’s inflammatory response into a cancer-killing outcome, is suggested in research findings by investigators at the University of California, San Diego (UCSD) School of Medicine.



The findings provide new insight into the immune system’s response to inflammation, the connection between inflammation and malignancy, and how the delicate balance between cancer promotion and inhibition can be manipulated in the patient’s favor, according to the study’s senior author, Michael Karin, Ph.D., UCSD professor of pharmacology, American Cancer Society Research Professor, and a member of the Rebecca and John Moores UCSD Cancer Center.

The studies in mice with colon or breast cancer showed that cancer metastasis, the growth of malignant tumors beyond the original site, was halted with inhibition of either one of two naturally occurring substances, a pro-inflammatory protein called nuclear factor-kappa B (NF-kB) or an inflammatory mediator called tumor necrosis factor alpha (TNFá). The result, published in the September 20, 2004 issue of the journal Cancer Cell, was increased effectiveness of a cancer-killing protein called TNF-related apoptosis-inducing ligand (TRAIL), leading to a decrease in cancer cells and increase in the life span of tumor-bearing mice.


The study’s first author, Jun-Li Luo, M.D., Ph.D., a member of the Karin team in the UCSD Laboratory of Gene Regulation and Signal Transduction, explained that normally, inflammation associated with malignancy activates NF-kB, TNFá and TRAIL, all at the same time. However, NF-kB has the upper hand, and with TNFá, stimulates tumor growth faster than TRAIL can inhibit it. "Our results suggest that is it possible to use NF-kB or TNFá inhibitors to prevent inflammation-induced tumor growth, thus destroying their advantage, and allowing TRAIL to tip the balance in its favor," Luo said.

The study builds upon previous work in the Karin lab recently featured as the cover article in the August 6, 2004 issue of the journal Cell*. In that study, the researchers provided the first evidence of the molecular link between inflammation and cancer. They determined that an enzyme called I-kappa-B kinase beta (IKKâ) is required for the activation of NF-kB, which acts as a master switch to turn on inflammation in response to bacterial or viral infections. In turn, NF-kB sets off a chain of reactions that lead to cancer.

Mice used in the new study were given colon or breast tumor cells which metastasized to the lung. Some of these cancer cells served as "controls," while other cells were given a protein that specifically inhibited activation of NF-kB, only in cancer cells. The different cells were injected into mice and all were able to establish metastatic growth in the lung, regardless of their ability or inability to activate NF-kB. After a week, all mice were injected with bacterial lipopolysaccchide (LPS), which induced inflammation. A post-mortum inspection of the mice showed that following inflammation, the control cells formed more numerous and larger tumor nodules, while the tumors formed by cells in which NF-kB was inhibited, had shrunk or partially disappeared after the LPS injection. As a result, mice injected with cancer cells lacking NF-kB activity exhibited much better survival than mice inoculated with control cells.

In further tests to determine how NF-kB activation mediates inflammation-induced tumor growth, the team studied mouse lung tissue as well as tumor nodules for expression of specific proteins known to modulate the body’s normal cell-killing process. Death-inhibiting proteins were abundant in tumors formed by cancer cells with normal NF-kB, but were absent in the tumors formed by cancer cells where NF-kB was inhibited.

While NF-kB is known to convert inflammatory stimuli into tumor growth signals, it is also known to activate TNFá, a major proinflammatory protein initially thought to play a role in the death of cancer cells. Investigators first reasoned that TNFá might be responsible for the death of cancer cells in which NF-kB was inhibited, seen in this study, since previous experiments have shown that high doses of TNFá can kill tumor cells when NF-kB activity is inhibited.

However, further experiments proved otherwise. When inflammation-inducing LPS was administered to tumor-bearing mice with normal NF-kB, the result was a rapid and robust induction of circulating TNFá and eventual acceleration of cancer growth. However, administration of an anti-TNFá antibody five minutes after LPS challenge neutralized most of the circulating TNFá, inhibited NF-kB activation in cancer cells, and prevented the inflammation-induced acceleration of tumor growth.

Rather than TNFá, the team found that TRAIL, a member of the TNF superfamily and a relative of TNFá, was the specific protein responsible for the tumor death response. While both NF-kB and TRAIL are activated in response to inflammation, NF-kB takes control, inhibits cell death and promotes cancer growth. When NF-kB or TNFá were inhibited, however, TRAIL was able to strongly assert its ability to reduce tumor growth by killing cancer cells. The role of TRAIL was further illustrated in additional experiments where a neutralizing anti-TRAIL antibody was injected into the mice following the LPS challenge. The result was tumor growth.

In their summary, the researchers said that since TNFá does not make a major contribution to tumor killing and instead may promote tumor growth, it may be advisable to develop drugs which reduce inflammation-associated toxicities, block inflammation-induced tumor growth and clear the way for TRAIL to initiate tumor killing. The latter approach can be accomplished by the use of NF-kB inhibitors, together with anti-TNFá drugs, the researchers contend. These drugs should be used in combination with TRAIL or TRAIL-inducing cytokines, such as beta interferon.

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>