Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Build Submarine to Track Octopuses

20.09.2004


Marine biologists want to find out more about the Giant Pacific Octopus, but this elusive creature doesn’t willingly reveal its secrets.

Divers can follow the octopus for short periods, but what’s really needed is an undersea robot that will wait patiently outside the creature’s den, ready to shadow its every move. UA engineering undergrads, in collaboration with students from two other universities, are building a mini-sub to answer this need. In July, they took a prototype to Alaska for testing. Appropriately named Shadow III (and painted a bright yellow that belies its sleuthy assignment) the mini-sub includes a video camera and hydrophones (sonar mikes) to track its prey.

Marine biologists, directed by Professor David Scheel at Alaska Pacific University, will use the sub to track octopuses. Meanwhile, undergrads at Colorado School of Mines are developing the hydrophones under the direction of Tyrone Vincent, an associate professor of electrical engineering. The hydrophones are set up to create bi-aural hearing that will allow researchers to determine the direction from which a sound originates.



During the July test, Shadow III completed ten dives in Prince William Sound, with a communications cable linking it to a mother boat on the surface. Divers checked it for leaks, while UA Professor Emeritus Tom Vincent and UA Mechanical Engineering senior Patrick Haley tested its robotic vision, motors and internal computer. Along the way, it encountered and filmed a Giant Pacific Octopus.

Tests included both: Fun and Frustration

"There were some fun moments and some frustrating ones during the testing," UA’s Vincent said. "We never thought we would have to take the dome off and expose the computer parts to salt air, but, of course, we immediately blew some fuses and had to remove the dome. So we had all this moist, salty air getting into everything." Lesson learned. Students will repackage all the electronics inside the sub to protect it from salt air when Shadow inevitably has to be adjusted on-site.

Repackaging the computer parts will be the latest in a long list of modifications and redesigns that began with Shadow I in 1998. Shadow has become an annual senior design project in UA’s Mechanical Engineering Department, and is entirely designed and built by undergraduates, with the exception of some computer programming done by a graduate student a couple of years ago.

The project received NSF funding in 2000 and has made great progress since then. Vincent anticipates that it will be ready to track octopuses next year. Before that happens, this year’s student design team will build a wireless communications system to free Shadow from the mother boat. Currently the sub and a computer on the mother boat are linked by a 100-foot-long coaxial cable. "We want to get rid of that tether from the boat and have it come to the surface at a buoy," Vincent said. "Then there will be a wireless link between the buoy and the boat."

The team also will modify Shadow’s buoyancy system. Water flows into a ballast ring that circles the center of the sub. The amount of water that it takes on determines the sub’s buoyancy, allowing it to submerge to any depth. Compressed air tanks on the sides of the sub blow this water out to bring Shadow to the surface. "Right now the buoyancy system is under manual control, but we hope to have it under automatic control next time," Vincent said. "We’ll just type in the depth we want on the computer and Shadow will automatically submerge to that depth."

SUB will be operational next year

Although the submarine will begin shadowing octopuses next year, Vincent has plenty of ideas to keep senior design teams busy for a long time. "The way it is now, we’ll still be on the surface watching images from Shadow’s video camera and waiting for something to happen," Vincent said. "We’ll manually control the video camera. But farther in the future we hope to make it totally autonomous."

In autonomous mode, the submarine would operate on its own, following an octopus using its hydrophone sensors. It would decide when to turn on its video camera, transmitting video to a remote receiver. "This would require the submarine to know something about the topography of the ocean bottom in its area so it wouldn’t run into a big rock or other obstacle while following the octopus," Vincent said.

The advantage of fully autonomous tracking is that octopuses spend a lot of time in their dens vegging out, which is pretty boring for researchers. Instead of waiting for hours on the surface, biologists could set up the robot to wait quietly for an octopus to emerge from its den. Then the submarine could become their eyes and ears underwater, recording the octopus’ movements for later retrieval. With that goal in mind, Vincent figures there’s plenty of engineering work to keep senior design teams occupied for several years to come.

| newswise
Further information:
http://www.u.arizona.edu
http://marine.alaskapacific.edu/octopus/
http://www.npca.org/marine_and_coastal/marine_wildlife/octopus.asp

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>