Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Build Submarine to Track Octopuses

20.09.2004


Marine biologists want to find out more about the Giant Pacific Octopus, but this elusive creature doesn’t willingly reveal its secrets.

Divers can follow the octopus for short periods, but what’s really needed is an undersea robot that will wait patiently outside the creature’s den, ready to shadow its every move. UA engineering undergrads, in collaboration with students from two other universities, are building a mini-sub to answer this need. In July, they took a prototype to Alaska for testing. Appropriately named Shadow III (and painted a bright yellow that belies its sleuthy assignment) the mini-sub includes a video camera and hydrophones (sonar mikes) to track its prey.

Marine biologists, directed by Professor David Scheel at Alaska Pacific University, will use the sub to track octopuses. Meanwhile, undergrads at Colorado School of Mines are developing the hydrophones under the direction of Tyrone Vincent, an associate professor of electrical engineering. The hydrophones are set up to create bi-aural hearing that will allow researchers to determine the direction from which a sound originates.



During the July test, Shadow III completed ten dives in Prince William Sound, with a communications cable linking it to a mother boat on the surface. Divers checked it for leaks, while UA Professor Emeritus Tom Vincent and UA Mechanical Engineering senior Patrick Haley tested its robotic vision, motors and internal computer. Along the way, it encountered and filmed a Giant Pacific Octopus.

Tests included both: Fun and Frustration

"There were some fun moments and some frustrating ones during the testing," UA’s Vincent said. "We never thought we would have to take the dome off and expose the computer parts to salt air, but, of course, we immediately blew some fuses and had to remove the dome. So we had all this moist, salty air getting into everything." Lesson learned. Students will repackage all the electronics inside the sub to protect it from salt air when Shadow inevitably has to be adjusted on-site.

Repackaging the computer parts will be the latest in a long list of modifications and redesigns that began with Shadow I in 1998. Shadow has become an annual senior design project in UA’s Mechanical Engineering Department, and is entirely designed and built by undergraduates, with the exception of some computer programming done by a graduate student a couple of years ago.

The project received NSF funding in 2000 and has made great progress since then. Vincent anticipates that it will be ready to track octopuses next year. Before that happens, this year’s student design team will build a wireless communications system to free Shadow from the mother boat. Currently the sub and a computer on the mother boat are linked by a 100-foot-long coaxial cable. "We want to get rid of that tether from the boat and have it come to the surface at a buoy," Vincent said. "Then there will be a wireless link between the buoy and the boat."

The team also will modify Shadow’s buoyancy system. Water flows into a ballast ring that circles the center of the sub. The amount of water that it takes on determines the sub’s buoyancy, allowing it to submerge to any depth. Compressed air tanks on the sides of the sub blow this water out to bring Shadow to the surface. "Right now the buoyancy system is under manual control, but we hope to have it under automatic control next time," Vincent said. "We’ll just type in the depth we want on the computer and Shadow will automatically submerge to that depth."

SUB will be operational next year

Although the submarine will begin shadowing octopuses next year, Vincent has plenty of ideas to keep senior design teams busy for a long time. "The way it is now, we’ll still be on the surface watching images from Shadow’s video camera and waiting for something to happen," Vincent said. "We’ll manually control the video camera. But farther in the future we hope to make it totally autonomous."

In autonomous mode, the submarine would operate on its own, following an octopus using its hydrophone sensors. It would decide when to turn on its video camera, transmitting video to a remote receiver. "This would require the submarine to know something about the topography of the ocean bottom in its area so it wouldn’t run into a big rock or other obstacle while following the octopus," Vincent said.

The advantage of fully autonomous tracking is that octopuses spend a lot of time in their dens vegging out, which is pretty boring for researchers. Instead of waiting for hours on the surface, biologists could set up the robot to wait quietly for an octopus to emerge from its den. Then the submarine could become their eyes and ears underwater, recording the octopus’ movements for later retrieval. With that goal in mind, Vincent figures there’s plenty of engineering work to keep senior design teams occupied for several years to come.

| newswise
Further information:
http://www.u.arizona.edu
http://marine.alaskapacific.edu/octopus/
http://www.npca.org/marine_and_coastal/marine_wildlife/octopus.asp

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>