Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Shed Light On Mechanism Behind Beneficial Effects Of Red Wine

20.09.2004


Scientists are a step closer to understanding the health benefits of drinking red wine. Researchers funded by the National Science Foundation (NSF) and affiliated with the Salk Institute in San Diego, Calif., have succeeded in converting chalcone synthase, a biosynthetic protein enzyme found in all higher plants, into an efficient resveratrol synthase. Resveratrol, a beneficial component of red wine, is thought to contribute to the improved cardiovascular effects associated with moderate consumption of red wine. The research results appear in the September issue of the journal Chemistry & Biology.



Laboratory studies with resveratrol have demonstrated an impressive list of health benefits, including roles as anti-oxidants, cancer preventing agents, blood thinners and blood pressure -lowering compounds. Resveratrol recently was shown to increase life span in fruit flies and yeast, suggesting an additional role in our diets as a promising anti-aging natural chemical. "This research demonstrates the power of protein engineering in producing value-added traits, and in solving synthetic puzzles using modern techniques," said William Nes, program director in NSF’s division of molecular and cellular biosciences, which funded the research. "The study provides new insights into the relationships among plant proteins."

The health benefits of resveratrol consumption are a lucky accident, scientists say, as grapes actually produce resveratrol in order to defend against fungal invasion. Researchers at the Salk Institute have now deciphered the three-dimensional structure of the plant enzyme that creates this remarkable but rare molecule. In the process, they’ve resolved a long-standing scientific puzzle: the crucial differences between common plant enzymes known as chalcone synthases and their resveratrol-producing relatives, the much rarer stilbene synthases.


Scientists realized decades ago that chalcones and stilbenes, two important classes of plant natural products with different properties, were produced by closely related enzymatic proteins. All higher plants possess chalcone synthase. Chalcone-derived natural chemicals fulfill a number of important biological functions in plants including roles in plant fertility, disease resistance and flower color. Conversely, production of resveratrol and other rare anti-fungal stilbenes occurs in just a few plant species, including grapevines, peanuts, blueberries and some pine trees.

Using the tools of structural biology, Michael Austin, a graduate student at the Salk Institute and the University of California, San Diego, solved the three dimensional structure of resveratrol synthase and compared its shape to its relative chalcone synthase. Austin is part of a research team led by biochemist Joseph Noel of the Salk Institute. The team has uncovered the crucial differences between these related plant enzymes. "In addition to illuminating the molecular mechanisms of plant evolution, this study has agricultural and nutraceutical significance," said Noel.

Noel and colleagues used their new knowledge to convert a chalcone synthase from alfalfa into an efficient resveratrol-producing factory, simply by changing a few amino acids (the building blocks of proteins). "This biotechnological advance will allow us to ’engineer’ natural resveratrol production into crop plants via a small modification of that plant’s own chalcone synthase gene, as occurs naturally in grapes and a few other plants," said Noel.

| NSF News
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>