Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Shed Light On Mechanism Behind Beneficial Effects Of Red Wine

20.09.2004


Scientists are a step closer to understanding the health benefits of drinking red wine. Researchers funded by the National Science Foundation (NSF) and affiliated with the Salk Institute in San Diego, Calif., have succeeded in converting chalcone synthase, a biosynthetic protein enzyme found in all higher plants, into an efficient resveratrol synthase. Resveratrol, a beneficial component of red wine, is thought to contribute to the improved cardiovascular effects associated with moderate consumption of red wine. The research results appear in the September issue of the journal Chemistry & Biology.



Laboratory studies with resveratrol have demonstrated an impressive list of health benefits, including roles as anti-oxidants, cancer preventing agents, blood thinners and blood pressure -lowering compounds. Resveratrol recently was shown to increase life span in fruit flies and yeast, suggesting an additional role in our diets as a promising anti-aging natural chemical. "This research demonstrates the power of protein engineering in producing value-added traits, and in solving synthetic puzzles using modern techniques," said William Nes, program director in NSF’s division of molecular and cellular biosciences, which funded the research. "The study provides new insights into the relationships among plant proteins."

The health benefits of resveratrol consumption are a lucky accident, scientists say, as grapes actually produce resveratrol in order to defend against fungal invasion. Researchers at the Salk Institute have now deciphered the three-dimensional structure of the plant enzyme that creates this remarkable but rare molecule. In the process, they’ve resolved a long-standing scientific puzzle: the crucial differences between common plant enzymes known as chalcone synthases and their resveratrol-producing relatives, the much rarer stilbene synthases.


Scientists realized decades ago that chalcones and stilbenes, two important classes of plant natural products with different properties, were produced by closely related enzymatic proteins. All higher plants possess chalcone synthase. Chalcone-derived natural chemicals fulfill a number of important biological functions in plants including roles in plant fertility, disease resistance and flower color. Conversely, production of resveratrol and other rare anti-fungal stilbenes occurs in just a few plant species, including grapevines, peanuts, blueberries and some pine trees.

Using the tools of structural biology, Michael Austin, a graduate student at the Salk Institute and the University of California, San Diego, solved the three dimensional structure of resveratrol synthase and compared its shape to its relative chalcone synthase. Austin is part of a research team led by biochemist Joseph Noel of the Salk Institute. The team has uncovered the crucial differences between these related plant enzymes. "In addition to illuminating the molecular mechanisms of plant evolution, this study has agricultural and nutraceutical significance," said Noel.

Noel and colleagues used their new knowledge to convert a chalcone synthase from alfalfa into an efficient resveratrol-producing factory, simply by changing a few amino acids (the building blocks of proteins). "This biotechnological advance will allow us to ’engineer’ natural resveratrol production into crop plants via a small modification of that plant’s own chalcone synthase gene, as occurs naturally in grapes and a few other plants," said Noel.

| NSF News
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>