Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Shed Light On Mechanism Behind Beneficial Effects Of Red Wine

20.09.2004


Scientists are a step closer to understanding the health benefits of drinking red wine. Researchers funded by the National Science Foundation (NSF) and affiliated with the Salk Institute in San Diego, Calif., have succeeded in converting chalcone synthase, a biosynthetic protein enzyme found in all higher plants, into an efficient resveratrol synthase. Resveratrol, a beneficial component of red wine, is thought to contribute to the improved cardiovascular effects associated with moderate consumption of red wine. The research results appear in the September issue of the journal Chemistry & Biology.



Laboratory studies with resveratrol have demonstrated an impressive list of health benefits, including roles as anti-oxidants, cancer preventing agents, blood thinners and blood pressure -lowering compounds. Resveratrol recently was shown to increase life span in fruit flies and yeast, suggesting an additional role in our diets as a promising anti-aging natural chemical. "This research demonstrates the power of protein engineering in producing value-added traits, and in solving synthetic puzzles using modern techniques," said William Nes, program director in NSF’s division of molecular and cellular biosciences, which funded the research. "The study provides new insights into the relationships among plant proteins."

The health benefits of resveratrol consumption are a lucky accident, scientists say, as grapes actually produce resveratrol in order to defend against fungal invasion. Researchers at the Salk Institute have now deciphered the three-dimensional structure of the plant enzyme that creates this remarkable but rare molecule. In the process, they’ve resolved a long-standing scientific puzzle: the crucial differences between common plant enzymes known as chalcone synthases and their resveratrol-producing relatives, the much rarer stilbene synthases.


Scientists realized decades ago that chalcones and stilbenes, two important classes of plant natural products with different properties, were produced by closely related enzymatic proteins. All higher plants possess chalcone synthase. Chalcone-derived natural chemicals fulfill a number of important biological functions in plants including roles in plant fertility, disease resistance and flower color. Conversely, production of resveratrol and other rare anti-fungal stilbenes occurs in just a few plant species, including grapevines, peanuts, blueberries and some pine trees.

Using the tools of structural biology, Michael Austin, a graduate student at the Salk Institute and the University of California, San Diego, solved the three dimensional structure of resveratrol synthase and compared its shape to its relative chalcone synthase. Austin is part of a research team led by biochemist Joseph Noel of the Salk Institute. The team has uncovered the crucial differences between these related plant enzymes. "In addition to illuminating the molecular mechanisms of plant evolution, this study has agricultural and nutraceutical significance," said Noel.

Noel and colleagues used their new knowledge to convert a chalcone synthase from alfalfa into an efficient resveratrol-producing factory, simply by changing a few amino acids (the building blocks of proteins). "This biotechnological advance will allow us to ’engineer’ natural resveratrol production into crop plants via a small modification of that plant’s own chalcone synthase gene, as occurs naturally in grapes and a few other plants," said Noel.

| NSF News
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>