Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV-1 Vif: Multiple ways to outsmart the body’s defences?

17.09.2004


The way that HIV disables the body’s natural defences against retroviruses is not as well understood as recent studies suggest, according to new research published in the Open Access journal Retrovirology. Klaus Strebel and his colleagues from NIH found that the HIV encoded Vif protein does not need to destroy the enzyme APOBEC3G within infected cells to disable it. This latest finding has serious implications for the design of antivirals to fight HIV.

APOBEC3G is one of the most recently identified ways that the body fights off unwanted attacks by retroviruses such as HIV. APOBEC3G is a cellular enzyme with the ability to chemically modify viral genomes and to change their genetic code. The changes to the HIV genome effectively neutralize it and prevent it from spreading to uninfected cells.

Recent research has shown that HIV has found a way to outsmart the body’s attempts to prevent it from replicating. HIV’s viral infectivity factor, or Vif, can prevent the packaging of APOBEC3G into the virus particles, stopping the enzyme from damaging the viral genome. The most popular current working model proposes that Vif does this by destroying APOBEC3G in infected cells.



Strebel and colleagues from the National Institutes of Health analyzed the coexpression of Vif and APOBEC3G in single-cells. They found that Vif can inactivate APOBEC3G without eliminating it from the virus producing cells. In their system, APOBEC3G was expressed at high levels even in the presence of Vif; yet, viruses produced in the presence of Vif were fully infectious.

These findings have important implications as they question the current working model proposing the efficient elimination of APOBEC3G from Vif-expressing cells. The authors do not question the validity of previously published data reporting on the destruction of APOBEC3G by Vif. Instead, they claim that destruction of APOBEC3G by Vif is not essential for the virus to multiply, and propose that the HIV Vif protein may have acquired the ability to target APOBEC3G on multiple levels to ensure that this protein is not packaged into viral particles. Understanding the exact mechanism of how Vif inhibits APOBEC3G will be essential for the design of antivirals targeting Vif.

Grace Baynes | Press BioMed Central
Further information:
http://www.retrovirology.com/content/1/1/27
http://www.biomedcentral.com
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>