Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV-1 Vif: Multiple ways to outsmart the body’s defences?

17.09.2004


The way that HIV disables the body’s natural defences against retroviruses is not as well understood as recent studies suggest, according to new research published in the Open Access journal Retrovirology. Klaus Strebel and his colleagues from NIH found that the HIV encoded Vif protein does not need to destroy the enzyme APOBEC3G within infected cells to disable it. This latest finding has serious implications for the design of antivirals to fight HIV.

APOBEC3G is one of the most recently identified ways that the body fights off unwanted attacks by retroviruses such as HIV. APOBEC3G is a cellular enzyme with the ability to chemically modify viral genomes and to change their genetic code. The changes to the HIV genome effectively neutralize it and prevent it from spreading to uninfected cells.

Recent research has shown that HIV has found a way to outsmart the body’s attempts to prevent it from replicating. HIV’s viral infectivity factor, or Vif, can prevent the packaging of APOBEC3G into the virus particles, stopping the enzyme from damaging the viral genome. The most popular current working model proposes that Vif does this by destroying APOBEC3G in infected cells.



Strebel and colleagues from the National Institutes of Health analyzed the coexpression of Vif and APOBEC3G in single-cells. They found that Vif can inactivate APOBEC3G without eliminating it from the virus producing cells. In their system, APOBEC3G was expressed at high levels even in the presence of Vif; yet, viruses produced in the presence of Vif were fully infectious.

These findings have important implications as they question the current working model proposing the efficient elimination of APOBEC3G from Vif-expressing cells. The authors do not question the validity of previously published data reporting on the destruction of APOBEC3G by Vif. Instead, they claim that destruction of APOBEC3G by Vif is not essential for the virus to multiply, and propose that the HIV Vif protein may have acquired the ability to target APOBEC3G on multiple levels to ensure that this protein is not packaged into viral particles. Understanding the exact mechanism of how Vif inhibits APOBEC3G will be essential for the design of antivirals targeting Vif.

Grace Baynes | Press BioMed Central
Further information:
http://www.retrovirology.com/content/1/1/27
http://www.biomedcentral.com
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>