Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers define link between eosinophils and asthma

17.09.2004


Mayo Clinic researchers have used a comparative genomic strategy to demonstrate a causative link between eosinophils, a rare type of white blood cell, and asthma. Their research shows that the presence of these unique blood cells is absolutely required for the development of asthma. The details of this animal-based study appear in the Sept. 17, 2004, issue of Science, the journal of the American Association for the Advancement of Science (AAAS).



For more than a century, scientists have known that eosinophils are often the dominant inflammatory cells present in the lungs of asthma patients, but the importance of these white blood cells has been poorly understood with some studies even discounting a role for these cells. This new study demonstrates that eosinophils are required for the mucus accumulation and the lung dysfunction associated with asthma.

Using the tools of genomics, Mayo Clinic researchers have engineered a mouse that is specifically devoid of eosinophils, but otherwise has a full complement of blood-derived cells. Disease symptoms in these transgenic mice were dramatically reduced, and in some cases completely eliminated, following exposure to an allergen that in normal animals leads to asthma.


The development of a unique and novel transgenic mouse model without eosinophils now permits a definitive assessment of a number of human diseases besides asthma that have been linked to this white blood cell, including allergic diseases, parasite infections and cancer.

"Demonstrating that the eosinophil, a rare and often ignored cell, is a central mediator in the inflammation associated with asthma is a very important finding," says James J. Lee, Ph.D., director, Special Animal Services Laboratory at Mayo Clinic in Scottsdale, Ariz. "The outcomes of this study suggest the possibility of developing novel therapies and pharmaceuticals to treat and/or prevent asthma."

The Study

Researchers at Mayo Clinic Scottsdale created genetically-engineered transgenic mice that selectively express a toxic "suicide" gene, diphtheria toxin A, in bone marrow stem cells that go on to become circulating eosinophils in the blood. As a result of the selective expression of this toxin, unique marrow stem cells are eliminated and eosinophils never appear in circulation. The resulting mice have a normal complement of all red and white blood cell types except they are uniquely devoid of eosinophils.

Lung disease studies were conducted by comparing the responses of these transgenic mice without eosinophils relative to normal animals that contain eosinophils following exposure to an airborne allergen that provoked symptoms characteristic of asthma.

Significance of the Discovery

This study clearly shows that eosinophil activities are important contributing factors leading to symptoms classically defined as hallmark features of asthma. Future medical genomics studies will seek to confirm these findings in asthma patients and to further define the role of eosinophils in human disease, thereby widening the understanding of the principle causes of asthma and leading to targeted therapeutic approaches previously dismissed or overlooked. Because no known human patients or naturally occurring mutations in the mouse have been reported to be deficient of eosinophils without other additional consequences, this transgenic mouse model represents an important opportunity to define unambiguously the specific role of eosinophils in many diseases.

Participants in the Study

In addition to Dr. James J. Lee, others involved in the research include Dawn Dimina; MiMi P. Macias, PhD; Sergei I. Ochkur, PhD; Michael P. McGarry, PhD; Katie R. O’Neill, PhD; Cheryl Protheroe; Ralph Pero; Thanh Nguyen, M.D.; Stephania A. Cormier, PhD; Elizabeth Lenkiewicz; Dana Colbert; Lisa Rinaldi; Steven J. Ackerman, PhD; Charles G. Irvin, PhD; and Nancy A. Lee, PhD.

Support

The research was supported by grants from the Mayo Foundation, the American Heart Association, and the National Institutes of Health.

Bob Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>