Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Venn diagram tactics to vet complex disease


NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency

A whole range of human muscular and neuromuscular diseases are caused by mutations in the mitochondrial respiratory chain/oxidative phosphorylation system. The problem is that there are about 120 genes involved in this system, some that are found in the mitochondria, and thus inherited through the mother, and some that are found in the nucleus and are inherited from both the mother and the father. Between the number of genes involved and the variable inheritance patterns, identifying all the mutations that could cause disease is a daunting task. Now David Thorburn and colleagues, from Murdoch Childrens Research Institute, have developed a methodology that takes a "Venn Diagram" approach to efficiently pinpoint mutations in this system. They utilize this method to identify a new cause for a lethal neonatal disease. The strategy makes use of cell-fusion experiments where cells from different patients are fused and the authors ask whether the fused cells are no longer defective -- this means the cells can complement one another. If the fused cells complement each other, this means that the original cells had mutations in different genes.

The authors then carry out a second round of fusions, but in these cells, they have had the mitochondrial DNA removed. Here, if the fused cells are no longer defective, the mutation is in the patient’s nuclear DNA. If the fusions remain defective, the causal mutation is likely to be in the mitochondrial DNA. This technique is a very rapid and powerful means to categorize the mutation type of cells from different patients. The authors effectively demonstrated the strength of this technique using cells from 10 different patients, and showed that 7 contained nuclear mutations and 1 contained a mitochondrial mutation. The authors then focused on two patients whose cells did not complement one another, meaning the same gene was mutated. From there they used a battery of mapping, microarray and bioinformatics analyses and identified mutations for both patients in the NDUFS6 gene; a gene not previously shown to be involved in this type of disease. This work shows how combining a series of analyses, including genetic, biochemical, microarray, and bioinformatics techniques provide a rapid and effective means to pinpoint mutations in diseases that have complex genetic backgrounds.

Laurie Goodman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>