Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify novel target for detecting ovarian cancer in blood

16.09.2004


Fox Chase Cancer Center researchers have found a new way to detect ovarian cancer in the blood. Reported in the Sept. 15, 2004, issue of Cancer Research, the new method targets hypermethylation--one mechanism used by cancer cells to turn off genes that protect against tumor development.



When these tumor-suppressor genes are inactivated by hypermethylation, they cannot do their job, which then allows cancer cells to develop. This research marks the first time hypermethylation has been examined for the detection of ovarian cancer. Fox Chase molecular biologist Paul Cairns, Ph.D., and his colleagues tested for hypermethylation of BRCA1 and RASSF1A, two genes strongly associated with ovarian cancer. "In normal cells, BRCA1 and RASSF1A are unmethylated, meaning they are able to do their job. We found these genes to be frequently hypermethylated in the blood and peritoneal fluid from patients with ovarian cancer," explained Cairns.

Tumor samples, preoperative blood and peritoneal fluid DNA were obtained and matched from 50 patients with ovarian or primary peritoneal cancer. The blood from 20 healthy age-matched women, normal ovary tissue from 10 women, and tissue, blood and peritoneal fluid from 10 women with benign ovarian cysts were used for controls.


Thirty-four of the 50 tumors (68 percent) showed hypermethylation of one or both genes. The remaining 16 tumor samples, which did not show hypermethylation for RASSF1A or BRCA1, had hypermethylated forms of other tumor-suppressor genes: APC, p14, p16 and DAP (death-associated protein-kinases), which provided a target for screening.

An identical pattern of gene hypermethylation was found in the matched blood DNA from 41 of 50 patients (82 percent sensitivity), including 13 of 17 cases of stage I disease. No hypermethylation was observed in the non-cancerous tissue, peritoneal fluid or blood from control samples (100 percent specificity). "We were keenly interested in the potential of hypermethylation for the detection of early ovarian tumors," said Cairns, "so we tested an additional 21 stage I tumor DNA samples." Twenty of the 21 showed hypermethylation of at least one of the six genes in the panel.

"Hypermethylation is a common event in these tumors and appears to happen relatively early because we found it in early-stage cancers," said Mitchell Edelson, M.D., a gynecological oncologist in the department of surgical oncology at Fox Chase and a co-author of the study. "What’s encouraging about this research is that there were no false-positive results. A gene negative for hypermethylation in the tumor DNA was always negative in the matched serum or peritoneal fluid DNA. "There is no other obvious body fluid available for ovarian cancer testing except the blood," Edelson added. "In the past couple of years, we have seen detection attempts with proteomics and now with this method. It is encouraging to see so much activity regarding one of the most feared diseases for women."

The potential application of this finding could be significant because there is no reliable screening method available for ovarian cancer. Most women are diagnosed with late-stage disease after developing symptoms. The cure rate for women with advanced ovarian cancer is low, but doctors are often successful in treating early-stage disease. "It would appear that hypermethylation is a very specific marker for this disease, and if confirmed in larger studies, methylation may be useful in ovarian cancer diagnosis," said Cairns.

In earlier research, Cairns and his colleagues have demonstrated the ability to detect prostate and kidney cancer by targeting hypermethylation.

Carter Mallet | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>