Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marijuana-like chemicals in the brain calm neurons

16.09.2004


From the munchies to the giggles to paranoia, smoking marijuana causes widespread changes in the brain. Now researchers at Stanford University School of Medicine are a step closer to understanding how the drug’s active ingredients - tetrahydrocannabinol and related compounds, called cannabinoids - may exert their effects.



David Prince, MD, the Edward F. and Irene Thiele Pimley Professor of Neurology and Neurological Sciences, and his colleagues found that a group of neurons that act as information gatekeepers in the brain’s major information processing center, called the cerebral cortex, release cannabinoids that quiet their own activity. This form of self-inhibition is a novel way for neurons to regulate their own ability to send messages to their neighbors. Tetrahydrocannabinol from marijuana may work its brain-altering magic by binding to these same cells.

"Marijuana is a major drug of abuse with actions in the brain that aren’t entirely known. Now we understand one piece of the puzzle," Prince said. The work of Prince and his colleagues John R. Huguenard, PhD, associate professor of neurology and neurological sciences, and Alberto Bacci, PhD, staff research associate, is published in the Sept. 16 issue of Nature.


The cells under scrutiny lie in the cerebral cortex. This region processes information from the eyes, ears, skin and other sense organs, regulates movement and performs complex functions such as those involved in thinking, learning and emotions. The cortex contains two major types of nerve cells: pyramidal neurons that excite both local and more distant neighbors, and inhibitory interneurons that act as local dimming switches, shutting down the activity of nearby brain cells. The inhibitory interneurons prevent the brain from taking in and responding to every thought, sight or sound it encounters. They also protect against runaway excitation such as that seen in epilepsy.

In previous work, other researchers had found that pyramidal cells manufacture and release cannabinoids that bind to a receptor on the membrane of interneurons. In this process, called retrograde signaling, the pyramidal cell does the equivalent of slipping its guardian interneuron some sleeping pills. It frees itself from inhibition by releasing cannabinoids that briefly decrease the interneuron’s ability to release inhibitory molecules.

In contrast, Bacci and his colleagues found that interneurons can drug themselves when they get repetitively excited, triggering a self-inhibition process. The class of interneurons the researchers studied, the so-called "LTS cells" of the cerebral cortex, manufacture and release cannabinoids that bind to their own cannabinoid receptors and shut down their ability to signal other neurons. By shutting themselves off, the interneurons block their quieting action on the excitatory pyramidal cells - an effect that can last as long as 35 minutes, much longer than what had been seen with retrograde inhibition. Without the quieting effect, pyramidal cells signal more intensely, triggering a higher level of activity in circuits of the cortex.

Prince said it’s too early to know exactly how marijuana binding to the cannabinoid receptor exerts its behavioral effects. However, because the interneurons inhibit cells that have such wide-ranging effects, it’s no surprise that the drug alters how people perceive the world around them. "A loss of inhibition in pyramidal cells could produce changes in perception, in motor function and in everything the cerebral cortex does," he said.

The Stanford team hopes that by studying how these receptors work, researchers may learn how to make drugs that selectively bind and block subtypes of cannabinoid receptors on one type of cell but not another. This may be one way to harness the medically useful aspect of marijuana without causing brain-altering side effects.

According to Prince, such drugs could also be useful in treating epilepsy. Pyramidal cells are among those that fire out of control during a seizure. One reason these cells fire so rapidly may be that interneurons get shut down. A drug that blocks cannabinoid receptors on some types of inhibitory interneurons might allow them to continue quieting the pyramidal cells during periods of intense activity.

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>