Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of fruit fly pancreas points to possible diabetes cures

16.09.2004


Fruit flies have cells that function like a miniature pancreas. That’s good news not only for the flies, but also for researchers hoping to use the tiny insects to develop cures for diabetes.



Almost two years ago Seung Kim, MD, PhD, assistant professor of developmental biology and of medicine at the Stanford University School of Medicine, and colleagues including then-postdoctoral scholar Eric Rulifson, PhD, found cells in the fruit fly brain that make insulin. These cells tell the fly’s energy-storing organ, called a fat body, to store sugar and fat after a meal. In research published in the Sept. 16 issue of Nature the scientists report finding the other crucial half of the pancreatic equation - cells producing a glucagonlike hormone.

Together, glucagon and insulin act as a thermostat keeping blood sugar within a normal range. Islet cells produce insulin to lower blood sugar after a meal. When the amount of sugar in the blood dips between meals, other pancreatic cells produce glucagon to raise it. "Without glucagon or insulin you’re in big trouble," Kim said. "We found that’s also true in flies."


Kim thinks the two cell types in flies represent a primordial pancreas that scientists can study to better understand how the insulin- and glucagon-producing cells develop and function in humans. An immediate application could be testing new drugs before trying them in more expensive lab animals such as mice.

The flies could also provide insights into how pancreatic islet cells form - information that could help Kim and his colleagues devise ways of coaxing stem cells to develop into pancreatic cells. "We can try to find out what regulates the development of those cells and use that information to help make human islet cells," he said, adding that stem cells could potentially be used to replace the lost insulin-producing cells in people with diabetes.

About 300,000 people in the United States have type-1 diabetes, in which the body’s immune system destroys pancreatic cells that produce insulin. Without insulin, the muscles and liver don’t receive a signal to take up sugar from the blood after a meal. The excess sugar binds to proteins including those that line the blood vessels. If people don’t carefully control their blood sugar using injected insulin they can end up with heart disease, blindness, kidney disease or require amputations.

Although the insulin- and glucagon-making cells in fruit flies aren’t clumped together in a solid organ such as the human pancreas, they faithfully mimic the functions of their human counterparts. When Kim and Rulifson destroyed the insulin-producing cells, causing the equivalent of human diabetes, the fat body no longer received a signal to store sugar and the fly’s blood sugar skyrocketed. Wiping out the glucagon-producing cells caused the blood sugar to plummet, as in the potentially fatal human condition known as hypoglycemia.

In addition to producing similar molecules, flies and humans have a comparable mechanism for regulating blood sugar, the researchers found. A protein on the insulin-producing and glycogen-producing cells in humans alters its shape when it detects changes in energy levels within the cell. This change triggers the cell to release insulin or glucagon as needed to keep blood sugar and energy levels within a normal range.

Fruit flies have that same protein, but it’s found only on the cell that makes the glucagonlike protein, called AKH. Kim and Rulifson, now an assistant professor at the University of Pennsylvania, speculate this means that the most ancient hormonal regulators of metabolism first secreted glucose.

Kim and Rulifson found that the conserved protein, called the sulfonylurea receptor or Sur, regulates the release of AKH, similar to its role in human cells. They found that the protein in flies is so similar to the human protein that it responds to common drugs used by diabetics called sulfonylureas. Prescribed to millions of people with diabetes, these drugs work by helping Sur change shape and allow islet cells to release insulin. These same drugs act on Sur in flies, but the result is a release of AKH rather than insulin.

With so many similarities in how the cells detect and regulate blood sugar, Kim thinks the fruit fly’s primordial pancreas will be a useful tool for scientists studying both diabetes and hypoglycemia in humans. "This innovative research by Drs. Kim and Rulifson raises the exciting possibility that the fruit fly may serve as a model organism for discovering drugs that affect glucose regulation and hypoglycemia and for better understanding beta cell and islet development," said Richard Insel, MD, executive vice president for research at the Juvenile Diabetes Research Foundation in New York.

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>