Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major EU project shows "Killer bacteria" more common than expected

16.09.2004


Severe infections with Group A streptococci, sometimes called “flesh-eating killer bacteria,” are considerably more common than expected in many countries. In an EU project covering 11 countries, headed by Lund University in Sweden, it was calculated that some 1,000 cases would be found over an initial 1½-year period. Fully 5,000 were identified.



Group A streptococci, GAS, can sometimes occur in the throat without the carrier noticing anything. In other cases, the bacteria can cause a benign form of strep throat or skin infection. But in some cases, partly depending on the nature of the bacterial strain, a throat or skin infection can lead to serious consequences, with chronic heart and kidney damage. An acute GAS infection of the skin, for instance, can also dig deeper and lead to the muscles’ being virtually eaten up by the bacteria. In other cases the bacteria can spread rapidly and the body’s fine blood vessels start to leak fluids, which can lead to loss of blood pressure and rapid death, even in a young and previously healthy person.

“Our study has attracted a lot of attention, and we have had to turn down a number of countries that have wanted to be included in the project afterward,” says Aftab Jasir from the Section for Bacteriology at Lund University. She and her colleague Claes Schalén act as coordinators of the EU study.


“Some of these 11 countries, like Italy and Romania, initially claimed that they had almost no severe GAS infections whatsoever. But once they started looking, they found a huge number of cases. In Sweden there are some 300-400 severe GAS infections every year. In relation to population size, the incidence is roughly the same in the rest of Scandinavia, Great Britain, and the Czech Republic, which also have well-functioning systems for reporting these things. If we assume that this is the true incidence rate, then the enlarged EU should have 18-20,000 cases per year of severe streptococcal infections.”

“We’ll probably never arrive at the exact figure. But there are also a large number of cases we never find out about,” says Claes Schalén. “We therefore hope that the study will lead to pan-European monitoring of these infections, and to more uniform laboratory methods.”

The study also shows that not merely the number of cases but also the number of different types of bacteria is greater than previously recorded. In the past scientists have estimated that there are some 50 types of GAS. Now the number has reached nearly 200, and new forms are turning up all the time. Moreover, different types often dominate different countries.

“The US has invested a lot of money and time in the development of vaccines against the GAS types that were previously seen as the most common. But our results indicate that this is not a fruitful path. If a vaccine is to work, it has to be based on some very basic property of GAS,” says Aftab Jasir.

Severe streptococcal infections are treated with penicillin in combination with a more rapidly working antibiotic called clindamycin. But the EU study has uncovered a few cases of clindamycin resistance, which in a worst-case scenario could spread quickly and render the bacteria resistant to this treatment.

If clindamycin should become useless, there is one more move for severe cases, a drug called vancomycin. After that, there are no more antibiotics available. Therefore, not only Aftab Jasir and her associates but many others place their hopes in a substance that the Lund team has developed, called Cystapep. It is a substance that attacks several kinds of dangerous bacteria, and bacteria apparently cannot develop any resistance to it. This research is still in its early stages, however, and clinical use of Cystapep can only become a reality in about 5-10 years’ time.

Ingela Bjoerck | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>