Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Distinctive Signature for Metastatic Prostate Cancer

14.09.2004


Howard Hughes Medical Institute researchers have identified a telltale change in cellular machinery that could help clinicians predict whether prostate cancers are likely to spread or remain relatively harmless in the prostate.



The researchers found that a cellular signaling molecule called Hedgehog, which drives normal development and regeneration of prostate tissue, is greatly activated in prostate cancers. This elevated activity distinguishes dangerous metastatic cancers - those that are likely to spread - from those that remain benign and localized to the prostate.

Prostate cancer is the second leading cause of cancer death in men, and an estimated 230,000 cases will be diagnosed this year, according to the American Cancer Society. Treatment for prostate cancer can cause significant side effects, including sexual and urinary dysfunction, yet may not be needed for men whose cancers are unlikely to spread.


The researchers’ findings were published September 12, 2004, in an advance online publication in the journal Nature. The scientists were led by Howard Hughes Medical Institute (HHMI) investigator Philip A. Beachy and his colleagues at The Johns Hopkins University School of Medicine, Drs. David Berman and Sunil Karhadkar. Additional coauthors included other colleagues at Johns Hopkins and a researcher from the U.S. Department of Agriculture.

“These findings quite unexpectedly extend understanding of the Hedgehog pathway to a role in prostate cancer, which is a major form of cancer,” commented molecular oncologist Charles Sawyers, an HHMI investigator at the Jonsson Comprehensive Cancer Center at UCLA. “The results are incredibly interesting, because they are among the most promising I’ve seen to enable distinguishing good-risk cancers from bad-risk cancers - and thus, those that need minimal therapy from those that are lethal.”

The Hedgehog signaling pathway is a well-known regulator of organ development. Beachy and his colleagues, as well as researchers at other institutions, have found that in some cancers, this pathway has escaped the normal control mechanisms and helped spur uncontrolled cell proliferation. These include cancers arising in organs of the gastrointestinal tract, such as the stomach, pancreas, esophagus and biliary tract.

According to Beachy, since all these cancers arise in organs of endodermal origin, it seemed reasonable to test whether activation of the Hedgehog pathway might similarly drive the development of prostate cancer, which also arises from endodermal tissues.

In their initial studies, Beachy and his colleagues established that the Hedgehog pathway was, indeed, active in cultures of human metastatic prostate cancer cell lines. Blocking Hedgehog signaling with cyclopamine, a drug discovered by Beachy’s group that targets another protein in the pathway, Smoothened, inhibited growth of these cell lines. Furthermore, they showed that when the tumor cells were introduced into mice, cyclopamine caused a permanent regression of the tumors.

“We interpreted the finding in mice to mean that we had probably killed tumor stem cells responsible for propagating the cancers,” said Beachy. “This finding led us to explore the role that the Hedgehog pathway might play in the function of normal progenitor cells.”

To study the relationship of the Hedgehog pathway to normal prostate stem cells, the researchers performed experiments in mice in which they eliminated the male hormone, androgen, causing regression of the prostate. Normally, restoring androgen causes the prostate to regenerate. However, the scientists were able to block this regeneration by giving the animals cyclopamine or a Hedgehog-neutralizing antibody.

In additional studies of cultures of cells that closely resemble these prostate progenitor cells, the researchers found that switching on the Hedgehog pathway caused them to proliferate and form tumors when implanted into mice.

“This was a very striking observation, because it’s very tough with manipulation of expression of a single cellular gene - and has never been done before, to my knowledge - to cause a primary human cell to become a cancer,” said Beachy. “And that suggests that perhaps we have identified the right prostate target cell and activated the right pathway to trigger cancerous growth.”

To relate their findings to the metastatic process, the researchers tested samples of metastatic prostate cancer from men who had died of the disease. They found a uniformly high level of Hedgehog activity in these tissues, compared to benign prostate tissue samples. The researchers also found high levels of Hedgehog pathway activity in rat prostate cancer cells known to be actively metastatic.

In contrast, cells that were not metastatic showed low levels of activity. In particular, said Beachy, their experiments showed that pathway activation in metastatic cancers depended on the expression of Smoothened - suggesting that gene may be “a focal point of regulation in tissue regeneration and tumorigenesis.”

They also found they could convert low-metastatic cells into highly metastatic tumors by activating the Hedgehog pathway. “We actually found we could interconvert the two kinds of cell lines in mice,” said Beachy. “Whereas the high-metastatic lines were normally rapidly lethal in the mice, we could prolong survival essentially indefinitely by giving them cyclopamine. And when we activated Hedgehog in the low-metastatic lines, they became highly lethal,” he said.

HHMI investigator Matthew Scott, a developmental biologist who has studied the Hedgehog pathway at Stanford University, noted that Beachy’s “study is very thoroughly done and holds great promise in the search for new treatments for human disease. Quite possibly only some of the cells in a tumor - "tumor stem cells" - have the especially dangerous property of unlimited growth, so the search for ways to identify such cells is important,” he said.

According to Beachy, both diagnosis and treatment of prostate cancer could benefit from understanding the role of Hedgehog activation in carcinogenesis. “If clinicians could use Hedgehog activation - perhaps measured by detecting some marker in the blood - to distinguish indolent from metastatic disease, they could know to treat the metastatic form and not the indolent form,” he said. “If the indolent form, for example, were detected in older men, it might not be as necessary to perform a prostatectomy, since there would be little likelihood of metastasis.

“This finding also suggests that it may be possible to treat the metastatic disease with inhibitors of the Hedgehog pathway,” said Beachy. “However, given the broad importance of this pathway, there are questions of unwanted side effects. We have been able to give effective doses of cyclopamine to mice for long periods of time without any obvious detriment. But we have no idea whether there are long-term physiological effects, or whether humans might suffer side effects that we could not detect in animals.”

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>