Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule Awakens and Maintains Neural Connections

14.09.2004


A neuron from the brain in which DNA has been stained red and the Dasm1 protein, which controls mammalian dendrite development, has been stained green. Dasm1 is abundantly expressed in the dendrites of neurons, but not in the axons.


Researchers have discovered a critical protein that regulates the growth and activation of neural connections in the brain. The protein functions in the developing brain, where it controls the sprouting of new connections and stimulates otherwise silent connections among immature neurons, and potentially in the mature brain as well, where it may play a role in memory formation.

The researchers published their discovery of the protein, called dendrite arborization and synapse maturation 1, or Dasm1, in two papers in the September 7, 2004, issue of the Proceedings of the National Academy of Sciences. They were led by Howard Hughes Medical Institute investigators Yuh Nung Jan and Lily Yeh Jan. The first author on both papers was Song-Hai Shi in the Jans’ laboratory at the University of California, San Francisco.

Dendritic spines are mushroom-shaped protuberances that extend from the surface of the cable-like axon of a neuron. Dendrites receive chemical signals that trigger nerve impulses in the form of neurotransmitters launched from neighboring neurons. Growth of new dendrites can therefore increase the connection between neurons. Changes in the strength of connections, known as long-term potentiation, allow the brain to create memories.



In exploring the growth and development of dendritic spines, Shi, the Jans, and their colleagues first identified a gene in the fruit fly Drosophila that appears to play a role in regulating dendrite growth, or “arborization.” In comparing the fruit fly gene with databases of vertebrate genomes, they identified a similar homologue in mice, which they named Dasm1.

Their initial studies revealed that the gene was highly expressed in the brains of embryonic mice. “A major reason we became interested in this molecule is that when we used antibody markers to look at the distribution of the protein, we saw it primarily in the dendrites, with very little in the axons,” said Yuh Nung Jan. “If you look at areas of the hippocampus rich in dendrites, they just light up, whereas in axonal areas there is very little evidence for the presence of this protein.”

When the researchers blocked the activity of the version of the Dasm1 gene found in rats, they found dendrite arborization to be drastically reduced in cultured brain cells.

The researchers also studied the effects of Dasm1 on the maturation of neuronal connections, or synapses. Newly formed, immature synapses are silent, meaning they lack a type of receptor called AMPA receptors, which receive neurotransmitter molecules. However, these neurons do have other receptors, called NMDA receptors, which are associated with long-term changes in the strength of neuronal signaling. During maturation, dendrites acquire active AMPA receptors, and it was not known whether this process depended on Dasm1.

Shi, the Jans, and their colleagues found that interfering with Dasm1 function drastically decreased AMPA receptor function. Their experiments also revealed that Dasm1 was responsible for “awakening” silent synapses and promoting the maturation of the neuronal connections, a process that depends on dendrite development.

“While we expected that Dasm1 would contribute to dendrite arborization, the finding that reducing its activity caused a dysfunction in synaptic maturation was quite surprising,” Yuh Nung Jan said.

According to Lily Yeh Jan, the finding of a single control molecule for both maturation and arborization is significant. “It’s known that the ratio of AMPA to NMDA receptors increases during development, and it also increases during long-term potentiation,” she said. “So, Song-Hai’s identification of a molecule that is likely to be important for dendrite arborization and also to control synapse maturation is quite important.”

While the function of Dasm1 is not yet known, said Lily Yeh Jan, the protein’s structure hints that it is a receptor molecule. “The Dasm1 molecule has a large extracellular domain, a single transmembrane domain and a large cytoplasmic domain,” she said. “So that is characteristic of receptor molecules.” This suggests that, like other receptors, Dasm1 nestles in the cell membrane, receiving chemical signals that activate cellular processes.

Further evidence that Dasm1 is a receptor comes from an experiment in which Shi treated neurons with a molecule that mimicked Dasm1, but in which the portion of the molecule that extends into the cell had been replaced by a segment from another protein - rendering it unable to interact with Dasm1’s usual partners inside the cell. This treatment impaired dendrite growth, “which gives us hints that there is a signaling pathway within the cell activated by Dasm1 that we need to explore,” she said.

The next step, the researchers say, is to knock out the Dasm1 gene in mice to see whether the observations they have made in isolated brain tissue and cultured cells can be extended to neural development in vivo.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>