Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find way to clean up the drugs market

13.09.2004


Researchers from the University of Cambridge and the Massachusetts Institute of Technology have made a breakthrough by using supercritical carbon dioxide (scCO2) as a reaction medium for the preparation of molecules of interest to the pharmaceutical industry.

Many industries throughout the world have begun using the non-toxic, environmentally friendly scCO2 as a solvent, replacing harsher volatile organic solvents, such as chlorinated hydrocarbons and chlorofluorocarbons. Until now it was not considered possible to make certain classes of molecules in CO2 because it was thought that they would react with the CO2.

Cambridge University’s Professor Andrew Holmes, Director of the Melville Laboratory, together with MIT’s Professors Rick Danheiser and Jefferson Tester, have changed all that by figuring out how to use scCO2 for reactions without it reacting with the reagents.



Since the 1990s, scCO2 has emerged as an environmentally benign substitute for more conventional solvents used for organic synthesis, such as those that enter the atmosphere from sprays and similar products. Dry cleaners, plastics manufacturers, food producers and various industries involved in the extraction of flavours and fragrances are already using the ‘benign’ solvent, resulting in more environmentally friendly industrial practices. Using scCO2 as the extractive agent to remove caffeine selectively and leave the flavour of fresh coffee, for example, produces decaffeinated coffee beans.

Although a greenhouse gas, scCO2 can be obtained in large quantities as a by-product of fermentation and combustion. The ready availability, coupled with its ease of removal and recycling, makes scCO2 an exciting prospect for synthetic and industrial applications.
Supercritical carbon dioxide is a supercritical fluid, so called because it is taken beyond its critical temperature, to a point where it’s neither a liquid nor a gas but retains both liquid-like solvent properties and gas-like densities.

Pharmaceutical companies have begun using scCO2 for processing drugs into powder consistently, but the researchers’ findings may soon mean that the entire manufacturing process can be integrated, using scCO2 for both synthesis and processing them into powders.

Organic solvents can always react in undesired ways, so an advantage to using this non-toxic supercritical fluid is that it reduces the chances for alternative and less-desired outcomes.

Another major advantage to using supercritical fluids for organic synthesis is the ability of these physical properties to be tuned simply by a change in pressure and/or temperature.

Professor Holmes dreams of helping the pharmaceutical industry streamline the drugs manufacturing process with the techniques he and his team have developed. “We’re making molecules of interest to pharmaceutical companies — aromatic amines — which are a key fragment in many neurological drugs. Before it was considered impossible, but we’ve got preparations of aromatic amine reactions to work in supercritical carbon dioxide.”

A patent has been filed on behalf of the work done at Cambridge and MIT, which was funded by the Cambridge-MIT Institute (CMI). The researchers have published their findings in Chemical Communications, (The Royal Society of Chemistry) 2004.

In addition to the collaboration with MIT, the CMI project has enabled scientists at Cambridge to work closely with Professor Gerry Lawless and his team at the University of Sussex.

Pharmaceutical giant AstraZeneca is one of a number of companies that has long been interested and supportive of Professor Holmes’ work in scCO2.

Tracy Moran | alfa
Further information:
http://www.cambridge-mit.org

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>