Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists find way to clean up the drugs market


Researchers from the University of Cambridge and the Massachusetts Institute of Technology have made a breakthrough by using supercritical carbon dioxide (scCO2) as a reaction medium for the preparation of molecules of interest to the pharmaceutical industry.

Many industries throughout the world have begun using the non-toxic, environmentally friendly scCO2 as a solvent, replacing harsher volatile organic solvents, such as chlorinated hydrocarbons and chlorofluorocarbons. Until now it was not considered possible to make certain classes of molecules in CO2 because it was thought that they would react with the CO2.

Cambridge University’s Professor Andrew Holmes, Director of the Melville Laboratory, together with MIT’s Professors Rick Danheiser and Jefferson Tester, have changed all that by figuring out how to use scCO2 for reactions without it reacting with the reagents.

Since the 1990s, scCO2 has emerged as an environmentally benign substitute for more conventional solvents used for organic synthesis, such as those that enter the atmosphere from sprays and similar products. Dry cleaners, plastics manufacturers, food producers and various industries involved in the extraction of flavours and fragrances are already using the ‘benign’ solvent, resulting in more environmentally friendly industrial practices. Using scCO2 as the extractive agent to remove caffeine selectively and leave the flavour of fresh coffee, for example, produces decaffeinated coffee beans.

Although a greenhouse gas, scCO2 can be obtained in large quantities as a by-product of fermentation and combustion. The ready availability, coupled with its ease of removal and recycling, makes scCO2 an exciting prospect for synthetic and industrial applications.
Supercritical carbon dioxide is a supercritical fluid, so called because it is taken beyond its critical temperature, to a point where it’s neither a liquid nor a gas but retains both liquid-like solvent properties and gas-like densities.

Pharmaceutical companies have begun using scCO2 for processing drugs into powder consistently, but the researchers’ findings may soon mean that the entire manufacturing process can be integrated, using scCO2 for both synthesis and processing them into powders.

Organic solvents can always react in undesired ways, so an advantage to using this non-toxic supercritical fluid is that it reduces the chances for alternative and less-desired outcomes.

Another major advantage to using supercritical fluids for organic synthesis is the ability of these physical properties to be tuned simply by a change in pressure and/or temperature.

Professor Holmes dreams of helping the pharmaceutical industry streamline the drugs manufacturing process with the techniques he and his team have developed. “We’re making molecules of interest to pharmaceutical companies — aromatic amines — which are a key fragment in many neurological drugs. Before it was considered impossible, but we’ve got preparations of aromatic amine reactions to work in supercritical carbon dioxide.”

A patent has been filed on behalf of the work done at Cambridge and MIT, which was funded by the Cambridge-MIT Institute (CMI). The researchers have published their findings in Chemical Communications, (The Royal Society of Chemistry) 2004.

In addition to the collaboration with MIT, the CMI project has enabled scientists at Cambridge to work closely with Professor Gerry Lawless and his team at the University of Sussex.

Pharmaceutical giant AstraZeneca is one of a number of companies that has long been interested and supportive of Professor Holmes’ work in scCO2.

Tracy Moran | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>