Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar-coated sea urchin eggs could have sweet implications for human fertility

13.09.2004


Green sea urchins from the waters off the San Juan Islands in Washington state could help scientists to solve some human reproductive problems. (Photo credit: Christiane Biermann)


For many years scientists have believed they understood how closely related species that occupy the same regions of the ocean were kept from interbreeding. It turns out they were only seeing part of the picture.

New research from the University of Washington’s Friday Harbor Laboratories shows that common assumptions about sea urchin reproduction don’t hold true for all species of the invertebrate creature. The work could lead to better understanding of fertilization among mammals, including the potential to solve some baffling human reproductive problems.

"The importance for people is understanding the process. People come to fertility clinics wondering why their eggs don’t fertilize," said Christiane Biermann, a research associate at Friday Harbor Labs in Washington state’s San Juan Islands and an adjunct biology faculty member at Portland State University in Oregon.



In some places, different sea urchin species breed at different times of the year, or they occupy different ocean depths, so there is little chance of hybrids turning up. But in other places, such as the waters off the West Coast of North America, the species breed at the same time and occupy the same waters, and still hybrids are rare.

The purple sea urchin has been the most closely studied of the urchins and for years has served as the reproduction model for all sea urchins. Like other species, purple sea urchins are free spawners – females inject large clouds of eggs into the water and males do the same with sperm. Scientists found that the key to species-specific fertilization is a sperm protein called bindin connecting with the correct receptor in the plasma membrane on the surface of the egg. The sperm have to pass through a jelly-like coating, made up of complex carbohydrates, or sugars, to reach the egg surface. They react to the jelly coating by exposing the bindin protein.

It was thought that the egg jelly carbohydrates that activate the bindin were similar in all sea urchin species. In reality, the jelly coating contains a general type of carbohydrate in the purple sea urchin but in other species the jelly becomes a secondary barrier to prevent cross-species breeding. For instance, eggs of the green sea urchin, the purple urchin’s closest relative, have a different kind of carbohydrate, one that doesn’t activate the purple urchin’s sperm. The same holds true for purple urchin eggs and green urchin sperm. That means that just a small chemical change in a sugar molecule can limit fertilization.

The discovery, Biermann said, tells evolutionary biologists that sibling species have found different means to regulate their reproduction. "It helps to understand the process if you think of fertilization as sperm entering through several doors," she said. "In the past, we have focused on changes in the lock to the egg’s protein door, and how sperm proteins are able to unlock that door. Now we know that eggs can change the lock in the carbohydrate door too."

Biermann is first author of a paper describing the findings in the September-October edition of the journal Evolution & Development. Co-authors are Jessica Marks of the University of Bergen in Norway; and Ana-Cristina Vilela-Silva, Michelle Castro and Paulo Mourão of the Universidade Federal do Rio de Janeiro in Brazil.

While mammal eggs – mouse and human, for instance – don’t have a thick jelly coating like sea urchin eggs, they do have complex carbohydrate molecules on the surface. It is likely, Biermann said, that those sugars attach to proteins in sperm cells to trigger reproduction. "They are different but they probably do exactly the same thing as sea urchin eggs," she said.

She noted that proteins are much better understood than sugars, so the role of the proteins in sperm can be studied relatively easily. Figuring out exactly how the complex sugars work will take more research, but developing such understanding, she said, could lead to solutions for human reproductive problems, including new approaches to contraception.

The research also opens the possibility of studying other functions of carbohydrate-signaling molecules. The sugar chains in sea urchins are similar to some found in algae that have a variety of possible medical uses, as anticoagulants and antiviral agents, for example.

The research was supported by Friday Harbor Labs, the State University of New York at Stony Brook, the National Science Foundation, and the Norwegian and Brazilian research councils.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>