Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar-coated sea urchin eggs could have sweet implications for human fertility

13.09.2004


Green sea urchins from the waters off the San Juan Islands in Washington state could help scientists to solve some human reproductive problems. (Photo credit: Christiane Biermann)


For many years scientists have believed they understood how closely related species that occupy the same regions of the ocean were kept from interbreeding. It turns out they were only seeing part of the picture.

New research from the University of Washington’s Friday Harbor Laboratories shows that common assumptions about sea urchin reproduction don’t hold true for all species of the invertebrate creature. The work could lead to better understanding of fertilization among mammals, including the potential to solve some baffling human reproductive problems.

"The importance for people is understanding the process. People come to fertility clinics wondering why their eggs don’t fertilize," said Christiane Biermann, a research associate at Friday Harbor Labs in Washington state’s San Juan Islands and an adjunct biology faculty member at Portland State University in Oregon.



In some places, different sea urchin species breed at different times of the year, or they occupy different ocean depths, so there is little chance of hybrids turning up. But in other places, such as the waters off the West Coast of North America, the species breed at the same time and occupy the same waters, and still hybrids are rare.

The purple sea urchin has been the most closely studied of the urchins and for years has served as the reproduction model for all sea urchins. Like other species, purple sea urchins are free spawners – females inject large clouds of eggs into the water and males do the same with sperm. Scientists found that the key to species-specific fertilization is a sperm protein called bindin connecting with the correct receptor in the plasma membrane on the surface of the egg. The sperm have to pass through a jelly-like coating, made up of complex carbohydrates, or sugars, to reach the egg surface. They react to the jelly coating by exposing the bindin protein.

It was thought that the egg jelly carbohydrates that activate the bindin were similar in all sea urchin species. In reality, the jelly coating contains a general type of carbohydrate in the purple sea urchin but in other species the jelly becomes a secondary barrier to prevent cross-species breeding. For instance, eggs of the green sea urchin, the purple urchin’s closest relative, have a different kind of carbohydrate, one that doesn’t activate the purple urchin’s sperm. The same holds true for purple urchin eggs and green urchin sperm. That means that just a small chemical change in a sugar molecule can limit fertilization.

The discovery, Biermann said, tells evolutionary biologists that sibling species have found different means to regulate their reproduction. "It helps to understand the process if you think of fertilization as sperm entering through several doors," she said. "In the past, we have focused on changes in the lock to the egg’s protein door, and how sperm proteins are able to unlock that door. Now we know that eggs can change the lock in the carbohydrate door too."

Biermann is first author of a paper describing the findings in the September-October edition of the journal Evolution & Development. Co-authors are Jessica Marks of the University of Bergen in Norway; and Ana-Cristina Vilela-Silva, Michelle Castro and Paulo Mourão of the Universidade Federal do Rio de Janeiro in Brazil.

While mammal eggs – mouse and human, for instance – don’t have a thick jelly coating like sea urchin eggs, they do have complex carbohydrate molecules on the surface. It is likely, Biermann said, that those sugars attach to proteins in sperm cells to trigger reproduction. "They are different but they probably do exactly the same thing as sea urchin eggs," she said.

She noted that proteins are much better understood than sugars, so the role of the proteins in sperm can be studied relatively easily. Figuring out exactly how the complex sugars work will take more research, but developing such understanding, she said, could lead to solutions for human reproductive problems, including new approaches to contraception.

The research also opens the possibility of studying other functions of carbohydrate-signaling molecules. The sugar chains in sea urchins are similar to some found in algae that have a variety of possible medical uses, as anticoagulants and antiviral agents, for example.

The research was supported by Friday Harbor Labs, the State University of New York at Stony Brook, the National Science Foundation, and the Norwegian and Brazilian research councils.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>