Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report new gene test for isolated cleft lip and palate

13.09.2004


Researchers have developed a new genetic test that can help predict whether parents who have one child with the "isolated" form of cleft lip or palate are likely to have a second child with the same birth defect. Isolated clefts account for 70 percent of all cleft lip and palate cases.



The National Institute of Environmental Health Sciences, the National Institute of Dental and Craniofacial Research, and the National Institute of General Medical Sciences provided funding for the study. All three agencies are components of the National Institutes of Health. The study results appear in the August 19 issue of the New England Journal of Medicine.

"This study shows that we’ve reached a point where it’s possible to take blood samples from parents, test certain genes, and determine whether their risk for a second child with cleft lip or palate is, say, 1 percent or 20 percent," said Jeffrey Murray, M.D., a scientist at the University of Iowa and senior author on the study. "Now is the time to begin thinking about how best to apply these types of tests clinically and ensure that they truly benefit the families and their children."


Isolated clefts arise during fetal development from a dynamic interplay of genes, diet, and environmental factors, and current research tools are just beginning to cut through the complexity. Though the condition is usually correctable with several surgeries, families undergo tremendous emotional and economic hardship during the process. Children with this condition often require many other services, including complex dental care and speech therapy.

"These results show that a specific gene plays a crucial role in the development of isolated cleft lip and palate," said Dr. Kenneth Olden, director of NIEHS. "This discovery will provide parents with important information that will enable them to make informed decisions about future pregnancies."

According to Murray, babies born with the isolated form of cleft lip and palate do not have other birth defects often associated with this condition. Roughly one in every 600 babies in the United States is born with the isolated cleft lip and palate.

The authors say this latest gene test, when used with parents who already have one child with isolated cleft lip and palate, can predict this birth defect in subsequent children about 12 percent of the time. Utilizing this new gene test along with others that have already been developed, scientists now can collectively predict about 15 percent of isolated cleft lip and palate cases, impossible just a few years ago.

One of the first diagnostic tools of its kind, the gene test is based on distinct mutations in and around the gene IRF6, which encodes a specific protein that plays a vital role in the normal formation of the lips, palate, skin and genitalia during the early stages of development. The researchers found that mutations of the IRF6 gene are associated with an increased chance that a child would be born with a cleft lip or palate.

Two years ago, Murray and colleagues found that the IRF6 gene plays a role in Van der Woude Syndrome, a condition in which babies are born with clefts that are accompanied by other birth defects. There are more than 150 such syndromes, accounting for the remaining 30 percent of all cleft lip and palate.

Upon detailed analysis of the IRF6 gene, the researchers noticed a variation in the DNA sequence that they guessed may play a role in causing isolated clefts. The team reasoned the variation would somehow interfere with the normal biological activities of the IRF6 protein during tissue and organ development.

To test their hypothesis, the researchers focused their attention on a pool of 1,968 families, in Europe, South America, and Asia, with a history of isolated clefts. According to Murray, the rate of isolated clefts in some parts of the world, such as the Philippines, Brazil, and China, is even higher than in the United States. "We wanted to see whether the variation could be found across multiple ethnic and ancestral groups, or if it was confined to a single population."

When the researchers looked at the gene and nearby regions of the chromosome, they identified a total of 36 DNA variations, nine of which seemed to be associated with clefting. The individual variations were then assembled into a collective profile called a "haplotype." "What we found is that a particular haplotype is over-transmitted in some families with isolated clefts, suggesting a predictive association with the birth defect, and this was true in the populations that we analyzed from The Philippines, Denmark, and the United States."

Based on a detailed analysis of 1,316 families, the scientists estimated that the risk of parents with this haplotype having a second child with isolated cleft lip and palate is about 12 percent. As the researchers noted, their estimate is based on their analysis of the families and cannot be generalized to the broader public.

"For a complex trait like cleft lip and palate, this is a nice step forward because there may be dozens of genes that contribute to the condition," said Murray.

John Peterson | EurekAlert!
Further information:
http://www.niehs.nih.gov

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>