Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins show promise for mosquito control

13.09.2004


Mosquito abatement usually means one thing: blasting the pesky critters with pesticides. Those pesticides, although highly effective, can impair other organisms in the environment.



Que Lan, insect physiologist at the University of Wisconsin-Madison, and her colleagues in the entomology department are working on a new, more targeted approach to mosquito control: inhibiting their ability to metabolize cholesterol.

Cholesterol, the sticky substance that accumulates on the lining of human arteries, is an important component of cell membranes in vertebrates and invertebrates. In mosquitoes, it is vital for growth, development and egg production.


Unlike humans, mosquitoes cannot synthesize cholesterol. They must obtain it from decomposed plants they eat while in their larval stage, living in shallow waters. Plants make phytosterol, which is converted to cholesterol in the mosquito’s gut.

Using the yellow fever mosquito, Aedes aegypti, Lan and her research colleagues discovered that a sterol-carrying protein, AeSCP-2, is the vehicle that transports cholesterol in mosquito cells. Cholesterol is hydrophobic. In order to transport it in a liquid medium, such as blood or cell fluids, organisms must have a way to shield it from the watery environment through which it moves. That shield is typically a carrier protein, such as SCP-2.

Lan and her colleagues reasoned that if they could block the carrier protein, it would disrupt the uptake of cholesterol by the mosquito. Screening what she calls "a small chemical library of 16,000 compounds," Lan and her team found 57 compounds that inhibited the cholesterol-binding capacity of SCP-2.

The top five most viable inhibitor compounds were then tested on mosquito larvae, producing promising results--the larvae died. The results were dose-dependent; that is, at higher concentrations, larger numbers of larvae died. Still, the concentrations were very small, Lan says, in the range of 10 parts per million.

Lan has a somewhat personal vendetta against disease-carrying mosquitoes. Growing up in China, she contracted malaria when she was 13. A school teacher recognized her symptoms and encouraged her to see a physician. "I was drenched in sweat and pale as paper," Lan recalls. Interestingly, her father had malaria when he was a teenager. "That’s 50 percent of my family," she says.

"Control is urgent," Lan says. "Mosquito-borne illnesses are endemic in parts of China. Malaria is a big problem in south-central China. South of the Yangtze River the infant mortality rate is high, especially in homes without screens on the windows."

Although Lan grew up in Wuhan, a bustling city of 7 million, there were rice fields nearby. "It is a land of 10,000 lakes," she says, where rice is a major crop and the weather is hot and humid, perfect for mosquito breeding.

Worldwide, mosquitoes are notorious for spreading not only malaria, but also dengue fever (so painful it’s commonly called "break bone fever"), several forms of encephalitis, yellow fever, and West Nile virus. And the numbers are increasing. The World Health Organization estimates that there are 300 million cases of mosquito-borne diseases annually. Malaria is the biggest killer, claiming a million lives a year.

The two main approaches to future mosquito control, as Lan sees it, are genetic and chemical. In the genetic approach, she says, researchers are working on ways to modify the malaria mosquito so that it cannot transmit disease, but it can still take a blood meal. The problem with that approach, she says, is that there are many uncertainties about releasing genetically modified organisms into the environment.

Lan believes that a more fine-tuned chemical approach is more practical: only one compound is selected, it works for a short period, and it targets a single insect. "People might ask, ’Why do we need more pesticides?’" Lan says. The answer is twofold: resistance and the effect on non-target species. "I believe you should develop smart pesticides to only kill the mosquitoes," Lan says. "We don’t want to go down the same road as DDT."

To that end, her team is testing the most promising handful of SCP inhibitor compounds on a variety of insect and vertebrate species. So far three of the five compounds tested were not toxic to mouse cells and the other two were only slightly toxic. They will also test the compounds on other pest species, including flies, roaches and termites.

Environmental and degradation tests have yet to be performed. "We want a specific target with low residue time- two to three weeks and it should be degraded," Lan says.

Lan and her team have patented the gene and the methods for screening the compounds. It will take a year to screen another 20,000 chemicals. After that, they will be looking for companies to develop the compounds into chemical inhibitors for widespread mosquito control.

"Four years ago (when Lan joined the faculty of UW-Madison) I couldn’t imagine having five viable compounds in hand," Lan says. "This is the first example of looking at target proteins for pest management. No one has done this with insects."

Que Lan | EurekAlert!
Further information:
http://www.entomology.wisc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>