Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins show promise for mosquito control

13.09.2004


Mosquito abatement usually means one thing: blasting the pesky critters with pesticides. Those pesticides, although highly effective, can impair other organisms in the environment.



Que Lan, insect physiologist at the University of Wisconsin-Madison, and her colleagues in the entomology department are working on a new, more targeted approach to mosquito control: inhibiting their ability to metabolize cholesterol.

Cholesterol, the sticky substance that accumulates on the lining of human arteries, is an important component of cell membranes in vertebrates and invertebrates. In mosquitoes, it is vital for growth, development and egg production.


Unlike humans, mosquitoes cannot synthesize cholesterol. They must obtain it from decomposed plants they eat while in their larval stage, living in shallow waters. Plants make phytosterol, which is converted to cholesterol in the mosquito’s gut.

Using the yellow fever mosquito, Aedes aegypti, Lan and her research colleagues discovered that a sterol-carrying protein, AeSCP-2, is the vehicle that transports cholesterol in mosquito cells. Cholesterol is hydrophobic. In order to transport it in a liquid medium, such as blood or cell fluids, organisms must have a way to shield it from the watery environment through which it moves. That shield is typically a carrier protein, such as SCP-2.

Lan and her colleagues reasoned that if they could block the carrier protein, it would disrupt the uptake of cholesterol by the mosquito. Screening what she calls "a small chemical library of 16,000 compounds," Lan and her team found 57 compounds that inhibited the cholesterol-binding capacity of SCP-2.

The top five most viable inhibitor compounds were then tested on mosquito larvae, producing promising results--the larvae died. The results were dose-dependent; that is, at higher concentrations, larger numbers of larvae died. Still, the concentrations were very small, Lan says, in the range of 10 parts per million.

Lan has a somewhat personal vendetta against disease-carrying mosquitoes. Growing up in China, she contracted malaria when she was 13. A school teacher recognized her symptoms and encouraged her to see a physician. "I was drenched in sweat and pale as paper," Lan recalls. Interestingly, her father had malaria when he was a teenager. "That’s 50 percent of my family," she says.

"Control is urgent," Lan says. "Mosquito-borne illnesses are endemic in parts of China. Malaria is a big problem in south-central China. South of the Yangtze River the infant mortality rate is high, especially in homes without screens on the windows."

Although Lan grew up in Wuhan, a bustling city of 7 million, there were rice fields nearby. "It is a land of 10,000 lakes," she says, where rice is a major crop and the weather is hot and humid, perfect for mosquito breeding.

Worldwide, mosquitoes are notorious for spreading not only malaria, but also dengue fever (so painful it’s commonly called "break bone fever"), several forms of encephalitis, yellow fever, and West Nile virus. And the numbers are increasing. The World Health Organization estimates that there are 300 million cases of mosquito-borne diseases annually. Malaria is the biggest killer, claiming a million lives a year.

The two main approaches to future mosquito control, as Lan sees it, are genetic and chemical. In the genetic approach, she says, researchers are working on ways to modify the malaria mosquito so that it cannot transmit disease, but it can still take a blood meal. The problem with that approach, she says, is that there are many uncertainties about releasing genetically modified organisms into the environment.

Lan believes that a more fine-tuned chemical approach is more practical: only one compound is selected, it works for a short period, and it targets a single insect. "People might ask, ’Why do we need more pesticides?’" Lan says. The answer is twofold: resistance and the effect on non-target species. "I believe you should develop smart pesticides to only kill the mosquitoes," Lan says. "We don’t want to go down the same road as DDT."

To that end, her team is testing the most promising handful of SCP inhibitor compounds on a variety of insect and vertebrate species. So far three of the five compounds tested were not toxic to mouse cells and the other two were only slightly toxic. They will also test the compounds on other pest species, including flies, roaches and termites.

Environmental and degradation tests have yet to be performed. "We want a specific target with low residue time- two to three weeks and it should be degraded," Lan says.

Lan and her team have patented the gene and the methods for screening the compounds. It will take a year to screen another 20,000 chemicals. After that, they will be looking for companies to develop the compounds into chemical inhibitors for widespread mosquito control.

"Four years ago (when Lan joined the faculty of UW-Madison) I couldn’t imagine having five viable compounds in hand," Lan says. "This is the first example of looking at target proteins for pest management. No one has done this with insects."

Que Lan | EurekAlert!
Further information:
http://www.entomology.wisc.edu

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Researchers at IST Austria define function of an enigmatic synaptic protein

22.11.2017 | Life Sciences

Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes

22.11.2017 | Materials Sciences

Women and lung cancer – the role of sex hormones

22.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>