Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New dye directly reveals activated proteins in living cells

13.09.2004


A series of experiments reported on this week in the journal Science shows for the first time that novel biosensor dyes can directly reveal activation of proteins in individual living cells.



The research, led by Dr. Klaus M. Hahn, professor of pharmacology at the University of North Carolina at Chapel Hill’s School of Medicine, demonstrated that at least one of the dyes Hahn developed makes it possible to dramatically visualize the changing activation and intracellular location of the protein Cdc42.

The novel dyes open new possibilities for screening the molecular effects of drugs within the living cell. Currently, automated "high throughput" drug assays are conducted on thousands of cells at a time, but in vitro, in laboratory test tubes. Cdc42, a member of the Rho family of proteins, regulates multiple and sometimes opposite functions within the cell: movement, proliferation, cell death and shape.


Injected into connective tissue cells, the dye "I-SO" displayed a bright green-colored fluorescence as Cdc42 activation and interaction with other proteins occurred. In addition, the dye proved highly sensitive, enabling detection of protein activation at low levels, unlike current fluorescence methods that require protein over-expression for detection. "For the first time we saw native Cdc42 activity in living cells," Hahn said. "But perhaps the most important aspect of the paper is that we demonstrated a new approach: We showed we can look at endogenous molecules and their activation using novel dyes."

Unlike other protein visualization methods, "you’re looking directly at the fluorescence from this dye, which means it’s much brighter and more sensitive," Hahn said. Also differing from current methods, the new approach does not require making modifications to the protein in question. "Many proteins occur in small amounts, so if you put in exogenous material you change everything," Hahn said.

Among the reasons Hahn and co-authors at Scripps Research Institute in La Jolla, Calif., decided to study the Rho proteins was that different members of the protein family each control a different aspect of cellular movement of extension and retraction. One family controls extension of the edge, another the formation of fibers, and still another controls tail retraction. "And the key to understanding this mechanism is to see where in time and space each of these is turned on and how it’s all coordinated," Hahn said. "So there’s a really good reason to look at this in live cells. You can’t understand spatio-temporal control if you look at this in a test tube."

Another reason to study Rho proteins is that their activation is necessary to induce essentially opposite behaviors. "They’re activated for proliferation and for cell death (apoptosis), also for motility. So it may be that this spatio-temporal control is what’s producing these differences."

Some of the study’s biological findings in that latter regard were tantalizing. Cdc42 induced formation of cell extensions called filopodia when it was activated around the filopodia base and not within the lengths, Hahn said. "When we looked at extension and retraction, we found that Cdc42 activation was remarkably correlated with both. It was activated at exact locations relative to cell extensions and was turned off in exact parallel with retraction."

Further experiments showed that this coordination was produced by "upstream signals" regulating both retraction and extension. "The use of fluorescent labeling of molecules in live cells was pioneered over a decade ago here at UNC," Hahn said. "My work with these new dyes is an extension of that work, it grew out of that."

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>