Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New dye directly reveals activated proteins in living cells

13.09.2004


A series of experiments reported on this week in the journal Science shows for the first time that novel biosensor dyes can directly reveal activation of proteins in individual living cells.



The research, led by Dr. Klaus M. Hahn, professor of pharmacology at the University of North Carolina at Chapel Hill’s School of Medicine, demonstrated that at least one of the dyes Hahn developed makes it possible to dramatically visualize the changing activation and intracellular location of the protein Cdc42.

The novel dyes open new possibilities for screening the molecular effects of drugs within the living cell. Currently, automated "high throughput" drug assays are conducted on thousands of cells at a time, but in vitro, in laboratory test tubes. Cdc42, a member of the Rho family of proteins, regulates multiple and sometimes opposite functions within the cell: movement, proliferation, cell death and shape.


Injected into connective tissue cells, the dye "I-SO" displayed a bright green-colored fluorescence as Cdc42 activation and interaction with other proteins occurred. In addition, the dye proved highly sensitive, enabling detection of protein activation at low levels, unlike current fluorescence methods that require protein over-expression for detection. "For the first time we saw native Cdc42 activity in living cells," Hahn said. "But perhaps the most important aspect of the paper is that we demonstrated a new approach: We showed we can look at endogenous molecules and their activation using novel dyes."

Unlike other protein visualization methods, "you’re looking directly at the fluorescence from this dye, which means it’s much brighter and more sensitive," Hahn said. Also differing from current methods, the new approach does not require making modifications to the protein in question. "Many proteins occur in small amounts, so if you put in exogenous material you change everything," Hahn said.

Among the reasons Hahn and co-authors at Scripps Research Institute in La Jolla, Calif., decided to study the Rho proteins was that different members of the protein family each control a different aspect of cellular movement of extension and retraction. One family controls extension of the edge, another the formation of fibers, and still another controls tail retraction. "And the key to understanding this mechanism is to see where in time and space each of these is turned on and how it’s all coordinated," Hahn said. "So there’s a really good reason to look at this in live cells. You can’t understand spatio-temporal control if you look at this in a test tube."

Another reason to study Rho proteins is that their activation is necessary to induce essentially opposite behaviors. "They’re activated for proliferation and for cell death (apoptosis), also for motility. So it may be that this spatio-temporal control is what’s producing these differences."

Some of the study’s biological findings in that latter regard were tantalizing. Cdc42 induced formation of cell extensions called filopodia when it was activated around the filopodia base and not within the lengths, Hahn said. "When we looked at extension and retraction, we found that Cdc42 activation was remarkably correlated with both. It was activated at exact locations relative to cell extensions and was turned off in exact parallel with retraction."

Further experiments showed that this coordination was produced by "upstream signals" regulating both retraction and extension. "The use of fluorescent labeling of molecules in live cells was pioneered over a decade ago here at UNC," Hahn said. "My work with these new dyes is an extension of that work, it grew out of that."

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>