Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spontaneous mutation produces new MAO A/B knockout mouse

10.09.2004


A combination of luck and scientific curiosity has produced a mouse lacking two isoenzymes, MAO A and MAO B, that have been linked to violent criminal behavior and Parkinson’s disease. The MAO A/B knockout mouse should provide an excellent model in which to address the specific roles of these neurotransmitters and their receptors in anxiety and stress-related disorders.



The research appears as the "Paper of the Week" in the September 17 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

The monoamine oxidase isoenzymes MAO A and MAO B are involved in breaking down neurotransmitters. Higher or lower than normal amounts of these isoenzymes result in irregular neurotransmitter levels, causing abnormal behavior. Realizing the connection between neurotransmitter levels and behavior, psychiatrists routinely use MAO A inhibitors as antidepressants and MAO B inhibitors for Parkinson’s disease.


By making knockout mice lacking either MAO A or MAO B, Jean C. Shih, a Professor at the University of Southern California School of Pharmacy, and her collaborators previously showed how each isoenzyme functions in the body. However, up until now, scientists have been unsuccessful at making a mouse lacking both MAO A and MAO B.

This all changed when Dr. Shih and her colleague, Professor Kevin Chen, noticed that one of the mice in an MAO B knockout litter was a little different from its littermates--it had a lower body weight and was extremely hyper-reactive when approached. Wanting to figure out why the mouse was different, the scientists decided to breed the mouse and examine its offspring.

The scientists discovered that the mice not only had high levels of neurotransmitters broken down by MAO B, as would be expected in mice lacking MAO B, but also had high levels of neurotransmitters broken down by MAO A. This indicated that somehow the MAO B knockout mouse had also lost its ability to produce MAO A.

"Both MAO A and MAO B are critically important," says Dr. Shih. "When both are missing in mice, brain neurotransmitters levels increase greatly and body weights are smaller. The mice also show anxiety and aggressive behavior, especially under stress."

Looking further into the matter, Dr. Shih determined that a spontaneous mutation in a single nucleic acid base pair in the MAO A gene created a premature stop which prevented it from being made into a protein. The scientists hypothesize that the mutation was due to elevated levels of the MAO B substrate phenylethylamine in the MAO B knockout mice. Phenylethylamine is a neuromodulator which, when broken down into its metabolites, has been shown to cause mutations in DNA.

"Interestingly," says Dr. Shih, "a similar single base pair mutation occurs in the MAO A gene in the men of a Dutch family who show impulsivity and aggressive behavior." This mutation in the Dutch family’s MAO A also produces a premature stop codon which prevents production of the protein.

Dr. Shih’s MAO A/B knockout mice should provide scientists with good model in which to study the combined actions of MAO A and MAO B, as well as examine the roles of neurotransmitters in anxiety- and stress-related disorders.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>