Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spontaneous mutation produces new MAO A/B knockout mouse

10.09.2004


A combination of luck and scientific curiosity has produced a mouse lacking two isoenzymes, MAO A and MAO B, that have been linked to violent criminal behavior and Parkinson’s disease. The MAO A/B knockout mouse should provide an excellent model in which to address the specific roles of these neurotransmitters and their receptors in anxiety and stress-related disorders.



The research appears as the "Paper of the Week" in the September 17 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

The monoamine oxidase isoenzymes MAO A and MAO B are involved in breaking down neurotransmitters. Higher or lower than normal amounts of these isoenzymes result in irregular neurotransmitter levels, causing abnormal behavior. Realizing the connection between neurotransmitter levels and behavior, psychiatrists routinely use MAO A inhibitors as antidepressants and MAO B inhibitors for Parkinson’s disease.


By making knockout mice lacking either MAO A or MAO B, Jean C. Shih, a Professor at the University of Southern California School of Pharmacy, and her collaborators previously showed how each isoenzyme functions in the body. However, up until now, scientists have been unsuccessful at making a mouse lacking both MAO A and MAO B.

This all changed when Dr. Shih and her colleague, Professor Kevin Chen, noticed that one of the mice in an MAO B knockout litter was a little different from its littermates--it had a lower body weight and was extremely hyper-reactive when approached. Wanting to figure out why the mouse was different, the scientists decided to breed the mouse and examine its offspring.

The scientists discovered that the mice not only had high levels of neurotransmitters broken down by MAO B, as would be expected in mice lacking MAO B, but also had high levels of neurotransmitters broken down by MAO A. This indicated that somehow the MAO B knockout mouse had also lost its ability to produce MAO A.

"Both MAO A and MAO B are critically important," says Dr. Shih. "When both are missing in mice, brain neurotransmitters levels increase greatly and body weights are smaller. The mice also show anxiety and aggressive behavior, especially under stress."

Looking further into the matter, Dr. Shih determined that a spontaneous mutation in a single nucleic acid base pair in the MAO A gene created a premature stop which prevented it from being made into a protein. The scientists hypothesize that the mutation was due to elevated levels of the MAO B substrate phenylethylamine in the MAO B knockout mice. Phenylethylamine is a neuromodulator which, when broken down into its metabolites, has been shown to cause mutations in DNA.

"Interestingly," says Dr. Shih, "a similar single base pair mutation occurs in the MAO A gene in the men of a Dutch family who show impulsivity and aggressive behavior." This mutation in the Dutch family’s MAO A also produces a premature stop codon which prevents production of the protein.

Dr. Shih’s MAO A/B knockout mice should provide scientists with good model in which to study the combined actions of MAO A and MAO B, as well as examine the roles of neurotransmitters in anxiety- and stress-related disorders.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

How cheetahs stay fit and healthy

24.03.2017 | Life Sciences

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>