Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Serotonin metabolites in mollusks suggest pathways for human therapies

10.09.2004


From mollusks to mammals, newly discovered chemical pathways of serotonin in the nervous system are paving a path toward future pharmaceutical treatments for depression and other disorders.




"Understanding novel serotonin pathways in a tissue-dependent manner is useful for the development of pharmaceuticals intended to preserve serotonergic signaling," said Jeffrey N. Stuart, a doctoral student in the department of chemistry at the University of Illinois at Urbana-Champaign.

Recent findings by Stuart and his Illinois colleagues were the topic of a talk, "Characterization of Novel Serotonin Biochemical Pathways for Potential Therapeutic Applications," last month at the American Chemical Society’s 228th National Meeting in Philadelphia and of a paper in the August issue of the Journal of Neurochemistry.


Serotonin (5-hydroxytryptamine, or 5-HT) is a neurotransmitter present throughout the body. When nerve cells containing it are activated, serotonin is released. It travels and stimulates other nerve cells, enabling their message to spread through the nervous system.

"When serotonin is released, you do not want its signal to last forever," said Jonathan Sweedler, professor of chemistry and Stuart’s academic adviser. The signal caused by serotonin is turned off by enzymes that inactivate it by converting it into various metabolites, such as the ones discovered by Stuart.

Disruptions of serotonin signaling pathways are thought to occur in disorders such as depression, anxiety, sudden infant death syndrome, attention deficit hyperactivity disorder and irritable bowel syndrome. Many pharmaceutical treatments restore the pathways by preventing the cellular uptake of serotonin, where it is converted to other metabolites, or by directly inhibiting the enzymes responsible for the molecular conversion.

Because serotonin is distributed throughout the body, pharmaceuticals intended to correct serotonin imbalances in a specific tissue, such as in the brain, ultimately take effect in other tissues as well. That potentially leads to unwanted side effects.

Stuart, using a detection system built to measure serotonin and related compounds, found two new serotonin metabolites in the nervous system of marine mollusks. The metabolites were in separate yet adjacent body tissues, suggesting, he said, that different chemical pathways exist to convert serotonin.

"Characterization of site-specific serotonin pathways could provide novel means by which to more precisely target tissue-specific diseases related to 5-HT, such as in the brain or enteric nervous system," he said. "Because enzymes exist in mammals that can convert serotonin into metabolites, future treatments of nervous system disorders could exploit these pathways so that only a specific pathway in a specific tissue is affected."

Marine mollusks, such as the species Aplysia californica and Pleurobranchaea californica that were used in these experiments, are considered to be ideal model systems to study serotonin processing because they have simpler nervous systems than mammals. "They have larger, more easily identified neurons," Stuart said.

Mollusks are also good model systems because they show some mammal-like qualities that influence behavior, such as learning and memory, a discovery for which the Nobel Prize in Physiology or Medicine was awarded in 2000 to Eric Kandel of Columbia University in New York. Kandel studied how learning behavior was related to serotonergic and other signaling pathways in Aplysia californica, which are sea slugs the color of a purple plum that range up to a melon in size.

Aplysia californica live in warm, shallow water off the California coast in areas rich in vegetation where they feed on algae. Pleurobranchaea californica live in the cold, dark depths of the ocean floor, "and each one resembles a wet brown paper bag with the appetite and table manners of a hyena," said Rhanor Gillette, a professor in the department of molecular and integrative physiology at Illinois. He collaborated with Stuart and Sweedler to study how serotonin metabolites relate to behavior.

As predators, Pleurobranchaea feed voraciously on marine animals, including other Pleurobranchaea, ocean-bottom dwelling invertebrates and some fish. The Pleurobranchaea used in the Illinois research are captured in trawl nets off the southern California coast.

Like Aplysia, Pleurobranchaea also display learning and memory behaviors influenced by serotonin. "Serotonin is a major factor in organizing the behavior of Pleurobranchaea, particularly for feeding," Gillette said. "Some potential prey have dangerous, stinging defenses. In a single encounter, Pleurobranchaea learn to avoid their odor, Pleurobranchaea learn to avoid it by doing a characteristic avoidance turn during subsequent encounters. We are working with the serotonin pathways that underlie the odor learning."

Stuart reported at the ACS meeting that hungry Pleurobranchaea had more serotonin sulfate, one of the newly discovered serotonin metabolites, which could indicate that serotonin sulfate is a signal for hunger.

Stuart and Jason Ebaugh, a doctoral student in the neuroscience program, measured the blood levels of serotonin sulfate as a time-of-day function. It may be important for growth, most of which occurs during sleep, Gillette said. It’s possible that the role of serotonin sulfate in marine mollusks is similar to melatonin, which resests the circadian clock in humans, Stuart and colleagues suggested in the Journal of Neurochemistry.

"This is the first quantitative measure of how serotonin metabolites are related to a behavioral state in marine mollusks," Sweedler said. "What we do not know is whether serotonin sulfate causes the behavior or whether the behavior causes the elevation of serotonin sulfate."

Molly McElroy, | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>