Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Serotonin metabolites in mollusks suggest pathways for human therapies

10.09.2004


From mollusks to mammals, newly discovered chemical pathways of serotonin in the nervous system are paving a path toward future pharmaceutical treatments for depression and other disorders.




"Understanding novel serotonin pathways in a tissue-dependent manner is useful for the development of pharmaceuticals intended to preserve serotonergic signaling," said Jeffrey N. Stuart, a doctoral student in the department of chemistry at the University of Illinois at Urbana-Champaign.

Recent findings by Stuart and his Illinois colleagues were the topic of a talk, "Characterization of Novel Serotonin Biochemical Pathways for Potential Therapeutic Applications," last month at the American Chemical Society’s 228th National Meeting in Philadelphia and of a paper in the August issue of the Journal of Neurochemistry.


Serotonin (5-hydroxytryptamine, or 5-HT) is a neurotransmitter present throughout the body. When nerve cells containing it are activated, serotonin is released. It travels and stimulates other nerve cells, enabling their message to spread through the nervous system.

"When serotonin is released, you do not want its signal to last forever," said Jonathan Sweedler, professor of chemistry and Stuart’s academic adviser. The signal caused by serotonin is turned off by enzymes that inactivate it by converting it into various metabolites, such as the ones discovered by Stuart.

Disruptions of serotonin signaling pathways are thought to occur in disorders such as depression, anxiety, sudden infant death syndrome, attention deficit hyperactivity disorder and irritable bowel syndrome. Many pharmaceutical treatments restore the pathways by preventing the cellular uptake of serotonin, where it is converted to other metabolites, or by directly inhibiting the enzymes responsible for the molecular conversion.

Because serotonin is distributed throughout the body, pharmaceuticals intended to correct serotonin imbalances in a specific tissue, such as in the brain, ultimately take effect in other tissues as well. That potentially leads to unwanted side effects.

Stuart, using a detection system built to measure serotonin and related compounds, found two new serotonin metabolites in the nervous system of marine mollusks. The metabolites were in separate yet adjacent body tissues, suggesting, he said, that different chemical pathways exist to convert serotonin.

"Characterization of site-specific serotonin pathways could provide novel means by which to more precisely target tissue-specific diseases related to 5-HT, such as in the brain or enteric nervous system," he said. "Because enzymes exist in mammals that can convert serotonin into metabolites, future treatments of nervous system disorders could exploit these pathways so that only a specific pathway in a specific tissue is affected."

Marine mollusks, such as the species Aplysia californica and Pleurobranchaea californica that were used in these experiments, are considered to be ideal model systems to study serotonin processing because they have simpler nervous systems than mammals. "They have larger, more easily identified neurons," Stuart said.

Mollusks are also good model systems because they show some mammal-like qualities that influence behavior, such as learning and memory, a discovery for which the Nobel Prize in Physiology or Medicine was awarded in 2000 to Eric Kandel of Columbia University in New York. Kandel studied how learning behavior was related to serotonergic and other signaling pathways in Aplysia californica, which are sea slugs the color of a purple plum that range up to a melon in size.

Aplysia californica live in warm, shallow water off the California coast in areas rich in vegetation where they feed on algae. Pleurobranchaea californica live in the cold, dark depths of the ocean floor, "and each one resembles a wet brown paper bag with the appetite and table manners of a hyena," said Rhanor Gillette, a professor in the department of molecular and integrative physiology at Illinois. He collaborated with Stuart and Sweedler to study how serotonin metabolites relate to behavior.

As predators, Pleurobranchaea feed voraciously on marine animals, including other Pleurobranchaea, ocean-bottom dwelling invertebrates and some fish. The Pleurobranchaea used in the Illinois research are captured in trawl nets off the southern California coast.

Like Aplysia, Pleurobranchaea also display learning and memory behaviors influenced by serotonin. "Serotonin is a major factor in organizing the behavior of Pleurobranchaea, particularly for feeding," Gillette said. "Some potential prey have dangerous, stinging defenses. In a single encounter, Pleurobranchaea learn to avoid their odor, Pleurobranchaea learn to avoid it by doing a characteristic avoidance turn during subsequent encounters. We are working with the serotonin pathways that underlie the odor learning."

Stuart reported at the ACS meeting that hungry Pleurobranchaea had more serotonin sulfate, one of the newly discovered serotonin metabolites, which could indicate that serotonin sulfate is a signal for hunger.

Stuart and Jason Ebaugh, a doctoral student in the neuroscience program, measured the blood levels of serotonin sulfate as a time-of-day function. It may be important for growth, most of which occurs during sleep, Gillette said. It’s possible that the role of serotonin sulfate in marine mollusks is similar to melatonin, which resests the circadian clock in humans, Stuart and colleagues suggested in the Journal of Neurochemistry.

"This is the first quantitative measure of how serotonin metabolites are related to a behavioral state in marine mollusks," Sweedler said. "What we do not know is whether serotonin sulfate causes the behavior or whether the behavior causes the elevation of serotonin sulfate."

Molly McElroy, | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>