Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers illuminate cause of crippling genetic disease

10.09.2004


Scientists at the University of Edinburgh are closer to correcting an abnormal gene which causes one of the crippling muscle wasting diseases known collectively as Charcot-Marie-Tooth (CMT) disease. Their findings may lead to the development of gene therapy to treat patients with CMT disease, it is reported in the current issue of Nature (9 September).



CMT affects around 23,000 people in the UK. It leads to muscle weakness and wasting in the feet, lower legs, hands and forearms and can confine those with the condition to a wheelchair. The researchers describe the role of the gene Periaxin in causing CMT.

University of Edinburgh researchers, working with colleagues in Paris, first identified Periaxin as one of the genes implicated in CMT disease in 2001.The new research, funded by the Wellcome Trust, has shown that the protein produced from this gene has a vital role in allowing the insulation around the nerves to stretch as nerves get longer during body growth. If the Periaxin gene is faulty, the insulation, known as myelin, stays as short segments and the nerves cannot conduct impulses quickly. This, in turn, means that patients lose the ability to walk.


Professor Peter Brophy, Director of the Centre for Neuroscience Research at Edinburgh University, and lead author of the paper, said: "Researchers have now identified about half of the 30 or so different genes which are responsible for inherited disease affecting the peripheral nervous system, but developing treatments has been difficult since, for most of these genes, we don’t understand their normal function. The Periaxin gene is one of the few for which we now understand its role in nervous system function. The next step is to try to develop gene therapies to correct the abnormal gene carried by patients with this highly disabling disease."

He added: "The major reason for studying genetic diseases in the human population is to try to develop treatments for the diseases. However, an important spin off is that these diseases can provide new understanding into human biology and the work on the Periaxin gene is a good example of this. As well as providing important insight into why patients with CMT disease become disabled, for the first time we now have a clear view of the importance of the length of the insulated segments around nerves, in determining how nerves work."

Linda Menzies | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>