Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria use ’molecular lasso’ to cop copper

10.09.2004


The bacteria that destroy about one-third of the potent greenhouse gas methane before it can reach the atmosphere use a neat trick to gather a key nutrient for the job. They produce a small organic compound and release it into the surrounding environment, where it "lassos" atoms of copper. The bacteria then reabsorb the compound and use the copper as a weapon against methane, from which they extract energy. The crystal structure of the compound--called methanobactin--will be reported in the Sept. 10 issue of Science. The research was led by Hyung J. Kim, who did much of the work as a graduate student at the University of Kansas and is now a postdoctoral associate at the University of Minnesota College of Biological Sciences.



Methanobactin may have antibacterial properties, and its ability to absorb copper may find application in the semiconductor industry, which needs copper-free water. The bacteria that make methanobactin are quite common. "These bacteria are often found in rice paddies and wetlands," said Kim. "Methane is produced in the bottom muck and diffuses into the water, where these bacteria live. The bacteria sequester the methane and turn it into methyl alcohol."

According to estimates made in the 1990s, the amount of methane produced from all sources worldwide is about 120 billion tons per year, said Kim. About 40 percent comes from paddies and wetlands, and the methane-eating bacteria, known as methanotrophs, remove 80 to 90 percent of it. That translates to a methane diet of close to 43 billion tons a year.


Playing a pivotal role in this drama is the methanobactin molecule, a tiny, pyramid-shaped compound with a cleft that holds a single atom of copper in place. The bacteria churn out methanobactin molecules in large numbers and send them into the environment to fetch copper. When the compound returns with its booty, it is thought that the copper is incorporated into molecules of a key enzyme that converts methane to methyl alcohol. A very reactive atom, copper is just the ticket for metabolizing methane, which--chemically speaking--is a hard nut to crack. Their reactivity also makes copper atoms toxic to the bacteria. Thus, methanobactin serves to keep copper under control and protect the bacterial cells from it.

One piece of the story still to be learned is how the methanobactin is retrieved by bacterial cells, Kim said. The cells apparently latch onto copper-bearing methanobactin molecules, but what happens next isn’t known. Also, unlike a cowboy’s lasso, methanobactin has no tether to its mother cell. Therefore, when bacterial cells release their methanobactin molecules, they probably never see them again; instead, they take delivery of copper from methanobactin released by other cells of the same species. Thus, copper gathering amounts to a bacterial free-trading market.

Methanobactin also seems to keep other bacteria out of the market.

"Synthesized compounds analogous to some parts of the methanobactin molecule have been shown to be antibacterial," said Kim. "Researchers in the laboratory of Alan DiSpirito at Iowa State University are exploring the antibacterial properties of this compound."

Besides Kim, co-authors of the Science paper include DiSpirito and David Graham, who was Kim’s adviser at the time the work was done and is an associate professor of civil, architectural and environmental engineering at the University of Kansas. Kim is currently working in the laboratory of Alan Hooper, professor of biochemistry, molecular biology and biophysics at the University of Minnesota. The work was supported by the National Science Foundation, the U.S. Department of Energy and the KU (University of Kansas) Research Development Fund.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>