Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria use ’molecular lasso’ to cop copper

10.09.2004


The bacteria that destroy about one-third of the potent greenhouse gas methane before it can reach the atmosphere use a neat trick to gather a key nutrient for the job. They produce a small organic compound and release it into the surrounding environment, where it "lassos" atoms of copper. The bacteria then reabsorb the compound and use the copper as a weapon against methane, from which they extract energy. The crystal structure of the compound--called methanobactin--will be reported in the Sept. 10 issue of Science. The research was led by Hyung J. Kim, who did much of the work as a graduate student at the University of Kansas and is now a postdoctoral associate at the University of Minnesota College of Biological Sciences.



Methanobactin may have antibacterial properties, and its ability to absorb copper may find application in the semiconductor industry, which needs copper-free water. The bacteria that make methanobactin are quite common. "These bacteria are often found in rice paddies and wetlands," said Kim. "Methane is produced in the bottom muck and diffuses into the water, where these bacteria live. The bacteria sequester the methane and turn it into methyl alcohol."

According to estimates made in the 1990s, the amount of methane produced from all sources worldwide is about 120 billion tons per year, said Kim. About 40 percent comes from paddies and wetlands, and the methane-eating bacteria, known as methanotrophs, remove 80 to 90 percent of it. That translates to a methane diet of close to 43 billion tons a year.


Playing a pivotal role in this drama is the methanobactin molecule, a tiny, pyramid-shaped compound with a cleft that holds a single atom of copper in place. The bacteria churn out methanobactin molecules in large numbers and send them into the environment to fetch copper. When the compound returns with its booty, it is thought that the copper is incorporated into molecules of a key enzyme that converts methane to methyl alcohol. A very reactive atom, copper is just the ticket for metabolizing methane, which--chemically speaking--is a hard nut to crack. Their reactivity also makes copper atoms toxic to the bacteria. Thus, methanobactin serves to keep copper under control and protect the bacterial cells from it.

One piece of the story still to be learned is how the methanobactin is retrieved by bacterial cells, Kim said. The cells apparently latch onto copper-bearing methanobactin molecules, but what happens next isn’t known. Also, unlike a cowboy’s lasso, methanobactin has no tether to its mother cell. Therefore, when bacterial cells release their methanobactin molecules, they probably never see them again; instead, they take delivery of copper from methanobactin released by other cells of the same species. Thus, copper gathering amounts to a bacterial free-trading market.

Methanobactin also seems to keep other bacteria out of the market.

"Synthesized compounds analogous to some parts of the methanobactin molecule have been shown to be antibacterial," said Kim. "Researchers in the laboratory of Alan DiSpirito at Iowa State University are exploring the antibacterial properties of this compound."

Besides Kim, co-authors of the Science paper include DiSpirito and David Graham, who was Kim’s adviser at the time the work was done and is an associate professor of civil, architectural and environmental engineering at the University of Kansas. Kim is currently working in the laboratory of Alan Hooper, professor of biochemistry, molecular biology and biophysics at the University of Minnesota. The work was supported by the National Science Foundation, the U.S. Department of Energy and the KU (University of Kansas) Research Development Fund.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>