Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GeneBalls: barcoding DNA

10.09.2004


Millions of genetic tests using just one drop of blood.



Queensland PhD student Angus Johnston has invented a unique technology with the potential to test for hundreds of diseases, cancers and genes in one, cheap, test. He hopes that within five years the technology will be available in a desktop unit for less than AU$30,000. “This is a unique, patented technology that has the potential to revolutionise genetic testing,” said Angus Johnston, PhD student and co-inventor of the technology. “A simple machine could be installed in a doctor’s surgery which would give almost instantaneous feedback on which diseases the patient is susceptible.”

GeneBalls would not only help diagnosing cancer and other diseases, but also give an early warning for diseases like heart disease. With this early warning the patient can make lifestyle changes before any symptoms occur.


Geneballs can currently look at 12 genes in one test, but in the next 12 months we plan to increase this number to tens or hundreds of thousands. The existing technology, is too expensive and inaccurate for clinical applications.

Angus is one of 16 early-career scientists presenting their research to the public for the first time thanks to Fresh Science. The researcher who best meets the criteria of the national competition will present their work in the UK courtesy of British Council Australia.

It’s been an exciting journey for the student researcher. “I’ve had the opportunity to do a PhD that’s led to direct commercial outcomes,” says Angus. “It has given me two international patents and a shareholding in a company which is commercialising the technology.”

GeneBalls are tiny particles one tenth the diameter of a human hair and work like a barcode on items in a supermarket.

Each tiny bead contains a mixture of fluorescent dyes and is coated with DNA. If a patient has DNA the same as DNA on one of the GeneBalls, their DNA will stuck to the GeneBall.

Niall Byrne | alfa
Further information:
http://www.freshscience.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>