Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How DNA code is turned into instructions for protein construction

10.09.2004


A team of scientists from the Hebrew University of Jerusalem and the Weizmann Institute of Science has revealed the structure of a cellular editor that “cuts and pastes” the first draft of RNA straight after it is formed from its DNA template. Many diseases appear to be tied to mistakes in this process, and understanding the workings of the machinery involved may lead to the ability to correct or prevent them in the future.

Since the discovery, around 25 years ago, that the bits of DNA in the genes that code for protein formation are interspersed with “filler” segments that have no known function, scientists have worked to understand the process by which the right sequences are lifted out and strung together to make a coherent set of instructions. This act, referred to as “RNA splicing,” takes place in the “spliceosome” situated in the cell nucleus. A large complex of proteins and short strands of RNA, the spliceosome distinguishes the beginnings and ends of coded segments, precisely cutting and stitching them together. Alternative splicing, which underlies the huge diversity of proteins in the body by allowing segments of the genetic code to be strung together in different ways, takes place in the spliceosome as well.

The team consisted of husband-and-wife scientists Prof Ruth Sperling of the Genetics Department of the Hebrew University and Prof Joseph Sperling of the Organic Chemistry Department of the Weizmann Institute; Ruth’s graduate student Maia Azubel; and Sharon Wolf of the Chemical Research Support Department at the Weizmann Institute. They produced the most detailed 3-D representation of the spliceosome’s structure to date with their study, published in the current edition of the journal Molecular Cell. Rather than follow previous attempts to unravel the workings of the splicing mechanism by studying spliceosomes created in test tubes, they managed to take spliceosomes directly from living cells and examine them under an electron microscope.



Their task was made difficult by the fact that spliceosomes in living cells are made up of four identical modules strung together like beads on a strand of RNA, each a miniature spliceosome capable of splicing on its own. The connections between the modules tend to be flexible, allowing the position of the units to vary in relation to each other. Thus pinning down a definitive shape and structure for the whole complex has been, until now, nearly impossible.

The team found a way to cut the RNA connections between the modules without harming the integral short strands of RNA that are essential to the splicing process, so they could study them individually. Split-second freezing at very low temperatures allowed the scientists to view the spliceosome units in as close to a natural state as possible. From thousands of images, each at a slightly different angle, a composite 3-D structure of the spliceosome was built up.

The revealed structure has two distinct, unequal halves surrounding a tunnel. The larger part appears to contain proteins and the short segments of RNA, while the smaller half is made up of proteins alone. On one side, the tunnel opens up into a cavity, which the researchers think functions as a holding space for the fragile RNA waiting to be processed in the tunnel itself.

What they didn’t see may be as important as what they saw. Whereas researchers examining splicing in test tubes saw evidence of a complicated sequence of events in which the spliceosome machinery assembles itself anew for each splicing job, the team’s investigations of spliceosomes from live cells found splicing to take place in pre-formed machines. This fits in with what is known about the way cells optimize their workload. “It’s much more efficient to have a machine on hand, ready to go, than to build a new one each time,” they noted.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>