Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NSF Funds First U.S-based 4Pi-Confocal Laser Scanning Microscope


New technology will open doors in biophysical research and education

The 4Pi-Confocal Laser Scanning Microscope is world’s most advanced light-based microscope-capable of revealing the structure of genetic material within a cell in three dimensions. The first such instrument is now coming to the United States, thanks to a National Science Foundation (NSF) grant to a Maine interdisciplinary biophysical research program.

The Institute for Molecular Biophysics (IMB) brings together expertise in biophysics and engineering at the University of Maine in Orono, molecular and cell biology at the Maine Medical Center Research Institute in Scarborough, and genetics and genomics at The Jackson Laboratory in Bar Harbor. The program’s goal: to explore the structure and function of genes and chromosomes within cells in order to understand precisely how genes control both normal development and disease.

"It’s been exciting to bring this enabling technology to the talented and diverse group of researchers at the IMB," said Angela Kraus, program director in NSF’s division of biological infrastructure, which funded the grant. "High-resolution analysis is a critical next step in genetics and genomics research. Fascinating results should emerge from this research."

The 4Pi microscope will enable the IMB researchers to examine specific structures within a cell-such as a single gene on a chromosome-at a resolution four to seven times greater than conventional confocal microscopy provides.

"Astronomers have space-based telescopes like the Hubble Space Telescope to understand the history and structure of the universe," said IMB co-director Barbara Knowles of The Jackson Laboratory. "Physicists have giant particle accelerators to isolate the fundamental elements of energy and matter. Now researchers in genetics and biology have an advanced tool to examine the very structure of the mouse, human and other genomes."

The 4Pi microscope is manufactured by Leica (Mannheim, Germany), based on technology developed by Stefen Hell of the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany. The S4Pi" designation refers to the unique way in which light is emitted.

"Imagine looking at a satellite image of your state of such high resolution that you can spot the local college football field," said IMB co-director Michael Grunze of the University of Heidelberg in Germany. "Now, imagine being able to see the football, in 3-D. The 4Pi represents a comparable increase in resolution, only on a nanoscale."

The NSF grant for the acquisition of the 4Pi also includes funding for a specialized microscopist, most likely a physicist, to analyze samples on the 4Pi. Grunze foresees that researchers will be able to send or bring biological samples to the IMB for analysis. "I see biology moving towards specialized high-tech centers like the IMB, bringing in investigators from all over the world," he said.

Julie A. Smith | NSF News
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>