Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex cells likely arose from combination of bacterial and extreme-microbe genomes

09.09.2004


New ’ring of life’ points to mergers and acquisitions between cells



According to a new report, complex cells like those in the human body probably resulted from the fusion of genomes from an ancient bacterium and a simpler microbe, Archaea, best known for its ability to withstand extreme temperatures and hostile environments. The finding provides strong evidence that complex cells arose from combinations of simpler organisms in a symbiotic effort to survive. Jim Lake and Maria Rivera, at the University of California-Los Angeles (UCLA), report their finding in the Sept. 9 issue of the journal Nature.

Scientists refer to both bacteria and Archaea as "prokaryotes"--a cell type that has no distinct nucleus to contain the genetic material, DNA, and few other specialized components. More-complex cells, known as "eukaryotes," contain a well-defined nucleus as well as compartmentalized "organelles" that carry out metabolism and transport molecules throughout the cell. Yeast cells are some of the most-primitive eukaryotes, whereas the highly specialized cells of human beings and other mammals are among the most complex.


"A major unsolved question in biology has been where eukaryotes came from, where we came from," Lake said. "The answer is that we have two parents, and we now know who those parents were." Further, he added, the results provide a new picture of evolutionary pathways. "At least 2 billion years ago, ancestors of these two diverse prokaryotic groups fused their genomes to form the first eukaryote, and in the processes two different branches of the tree of life were fused to form the ring of life," Lake said.

The work is part of an effort supported by the National Science Foundation--the federal agency that supports research and education across all disciplines of science and engineering--to re-examine historical schemes for classifying Earth’s living creatures, a process that was once based on easily observable traits. Microbes, plants or animals were said to be related if they shared certain, mostly physical, characteristics. DNA technology now allows much closer scrutiny of hereditary molecules, which provides a more accurate and detailed picture of the genetic relationships between and among living things.

"New computational tools and comparative analyses will undoubtedly find instances in which the evolutionary record will need to be set straight," said James Rodman, a program officer in NSF directorate for biology, which funded the research. "This new fellowship among microbiologists, evolutionists, and computationalists will provide a much fuller picture of the relatedness of living things."

Lake and Rivera analyzed and compared the genomes of 30 microorganisms selected from the three categories (eukaryotes, bacteria and Archaea). All of the microbes contained about the same number of genes. The researchers then used the computer to produce genome combinations that reflected the most likely ancestors of modern eukaryotes. Their analysis, they say, showed that two ancient prokaryotes--one most similar to a bacterium, and one an Archaea--combined genomes out of a mutually advantageous need to survive.

That theory, known as endosymbiosis, has been a popular explanation of how eukaryotic cells acquired smaller components to carry out cellular processes. According to the report, modern eukaryotes obtained genes required to operate the cell from the bacterial side of the family, and the information-carrying genes from the Archaea side.

Further, the authors say, the work also sheds light on the "horizontal" transfer of genes--sideways from organism to organism, rather than from parent to offspring.

Leslie Fink | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>