Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smac-ing back at cancer cells

09.09.2004


By mimicking a molecular switch that triggers cell death, researchers have killed cells grown in the laboratory from one of the most resilient and aggressive cancers – a virulent brain cancer known as glioblastoma. The new approach to tricking the cell-death machinery could be applied to a wide range of cancers where this pathway, known as apoptosis, has been inactivated.



The researchers -- led by Xiaodong Wang, a Howard Hughes Medical Institute investigator at the University of Texas Southwestern Medical Center at Dallas and his colleagues Patrick Harran and Jef De Brabander -- published their findings in the September 3, 2004, issue of the journal Science.

Many cancer cells are particularly hardy because they have switched off the apoptotic machinery at one point or another, protecting them from the suicide process that their aberrant behavior would otherwise trigger.


To reactivate the cell-death pathway in cancer cells, the researchers sought to create a molecular mimic of a protein called Smac, which promotes apoptosis. Normally, when apoptosis is activated in cells that are damaged or no longer needed, Smac is released from the mitochondria, which are the cell’s power plants. Once released, Smac binds to a group of gatekeeper proteins known as "inhibitor of apoptosis proteins" (IAPs), which normally hold in check the cell’s chief executioner enzymes. These enzymes, called caspases, wreak lethal havoc in cells targeted for apoptosis. Smac’s action is why it was named the "second mitochondria-derived activator of caspases."

Specifically, Wang and his colleagues sought to make a small molecule to mimic the function of the Smac protein, since a smaller molecule is better able to pass through the cell membrane to reach the cell’s interior, where IAP-caspase resides. "The idea for making this inhibitor molecule first arose in previous studies when our collaborator Dr. Yigong Shi solved the crystal structure of Smac interacting with the target protein IAP," said Wang. "We realized that the interactive motif of Smac with that protein is only four amino acids, so it was possible to make a small-molecule mimic."

According to HHMI investigator Steven F. Dowdy, who co-authored a Perspectives article in Science, the key to the study is that Wang and his colleagues took advantage of the fact that the Smac-IAP protein-protein interaction is relatively unstructured, since only the N-terminal amino acids of Smac interact with IAP. "This property allowed them to readily create a library of non-natural amino acids and search for one that looked like the Smac N-terminal domain and fit into the groove of IAP that triggers it to unleash caspases. And they found one that responds nearly identically in terms of concentration, but it’s resistant to proteases and it can penetrate the cell membrane just like other small molecules," said Dowdy, who is at the University of California, San Diego School of Medicine. The result of the search for Smac mimics was a molecule the researchers called "Compound 3."

"The way we arrived at Compound 3 was serendipitous," said Wang. "At first we thought that just mimicking the last four amino acids of Smac was the way to go, but we weren’t getting anywhere. But in one of the chemical reactions, we actually made a dimer – linking the molecules in pairs. That dimer, Compound 3, turned out to be much more active." The scientists believe the twinned molecule is more active because the Smac protein itself is a combination of two identical proteins, although the reason for Compound 3’s activity remains unclear.

Compound 3’s striking apoptosis-triggering activity revealed itself when the scientists introduced it into cultures of human glioblastoma cells. "We picked human glioblastoma because it is the hardest to kill," said Wang. "The cells grow like weeds and they are tough as a rock."

The cells, however, were no match for Compound 3. When the researchers added the Smac mimic to glioblastoma cultures -- along with a protein called TRAIL that also helps activate the apoptosis machinery -- it easily killed the cells. In contrast, they found, the same treatment had no effect on normal human fibroblast cells. "One particularly important finding is that the compound is effective at extremely low concentrations, already below those necessary for other commonly used anti-cancer drugs to work," said Wang. The low dosage needed to kill the cells suggests that as a therapy, the molecule may have fewer non-specific toxic side effects than many anti-cancer drugs.

IAP is also involved in another apoptotic process -- that triggered by a receptor protein called TNF alpha, which also triggers the inflammation process. The researchers found that Compound 3 also switched on apoptosis in cells treated with TNF alpha. Thus, said Wang, Compound 3 might also be used as an anti-inflammatory drug.

"Although this is still a hypothesis, it might be that, for example in rheumatoid arthritis, if we treated with something like Compound 3, it would cause TNF alpha to trigger apoptosis in the cells that cause joint and tissue damage. Thus, the secondary inflammation from these cells would be prevented."

However, he said, further studies in his laboratory will concentrate mainly on using Compound 3 as a prototype treatment for cancers. The researchers are currently testing the molecule’s effects on an array of cultured cancer cells. They also plan to begin testing the compound in animal models of cancer, to explore its effectiveness, stability and distribution in vivo.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>