Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smac-ing back at cancer cells

09.09.2004


By mimicking a molecular switch that triggers cell death, researchers have killed cells grown in the laboratory from one of the most resilient and aggressive cancers – a virulent brain cancer known as glioblastoma. The new approach to tricking the cell-death machinery could be applied to a wide range of cancers where this pathway, known as apoptosis, has been inactivated.



The researchers -- led by Xiaodong Wang, a Howard Hughes Medical Institute investigator at the University of Texas Southwestern Medical Center at Dallas and his colleagues Patrick Harran and Jef De Brabander -- published their findings in the September 3, 2004, issue of the journal Science.

Many cancer cells are particularly hardy because they have switched off the apoptotic machinery at one point or another, protecting them from the suicide process that their aberrant behavior would otherwise trigger.


To reactivate the cell-death pathway in cancer cells, the researchers sought to create a molecular mimic of a protein called Smac, which promotes apoptosis. Normally, when apoptosis is activated in cells that are damaged or no longer needed, Smac is released from the mitochondria, which are the cell’s power plants. Once released, Smac binds to a group of gatekeeper proteins known as "inhibitor of apoptosis proteins" (IAPs), which normally hold in check the cell’s chief executioner enzymes. These enzymes, called caspases, wreak lethal havoc in cells targeted for apoptosis. Smac’s action is why it was named the "second mitochondria-derived activator of caspases."

Specifically, Wang and his colleagues sought to make a small molecule to mimic the function of the Smac protein, since a smaller molecule is better able to pass through the cell membrane to reach the cell’s interior, where IAP-caspase resides. "The idea for making this inhibitor molecule first arose in previous studies when our collaborator Dr. Yigong Shi solved the crystal structure of Smac interacting with the target protein IAP," said Wang. "We realized that the interactive motif of Smac with that protein is only four amino acids, so it was possible to make a small-molecule mimic."

According to HHMI investigator Steven F. Dowdy, who co-authored a Perspectives article in Science, the key to the study is that Wang and his colleagues took advantage of the fact that the Smac-IAP protein-protein interaction is relatively unstructured, since only the N-terminal amino acids of Smac interact with IAP. "This property allowed them to readily create a library of non-natural amino acids and search for one that looked like the Smac N-terminal domain and fit into the groove of IAP that triggers it to unleash caspases. And they found one that responds nearly identically in terms of concentration, but it’s resistant to proteases and it can penetrate the cell membrane just like other small molecules," said Dowdy, who is at the University of California, San Diego School of Medicine. The result of the search for Smac mimics was a molecule the researchers called "Compound 3."

"The way we arrived at Compound 3 was serendipitous," said Wang. "At first we thought that just mimicking the last four amino acids of Smac was the way to go, but we weren’t getting anywhere. But in one of the chemical reactions, we actually made a dimer – linking the molecules in pairs. That dimer, Compound 3, turned out to be much more active." The scientists believe the twinned molecule is more active because the Smac protein itself is a combination of two identical proteins, although the reason for Compound 3’s activity remains unclear.

Compound 3’s striking apoptosis-triggering activity revealed itself when the scientists introduced it into cultures of human glioblastoma cells. "We picked human glioblastoma because it is the hardest to kill," said Wang. "The cells grow like weeds and they are tough as a rock."

The cells, however, were no match for Compound 3. When the researchers added the Smac mimic to glioblastoma cultures -- along with a protein called TRAIL that also helps activate the apoptosis machinery -- it easily killed the cells. In contrast, they found, the same treatment had no effect on normal human fibroblast cells. "One particularly important finding is that the compound is effective at extremely low concentrations, already below those necessary for other commonly used anti-cancer drugs to work," said Wang. The low dosage needed to kill the cells suggests that as a therapy, the molecule may have fewer non-specific toxic side effects than many anti-cancer drugs.

IAP is also involved in another apoptotic process -- that triggered by a receptor protein called TNF alpha, which also triggers the inflammation process. The researchers found that Compound 3 also switched on apoptosis in cells treated with TNF alpha. Thus, said Wang, Compound 3 might also be used as an anti-inflammatory drug.

"Although this is still a hypothesis, it might be that, for example in rheumatoid arthritis, if we treated with something like Compound 3, it would cause TNF alpha to trigger apoptosis in the cells that cause joint and tissue damage. Thus, the secondary inflammation from these cells would be prevented."

However, he said, further studies in his laboratory will concentrate mainly on using Compound 3 as a prototype treatment for cancers. The researchers are currently testing the molecule’s effects on an array of cultured cancer cells. They also plan to begin testing the compound in animal models of cancer, to explore its effectiveness, stability and distribution in vivo.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>