Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wrapping a memory with an experience, capacity for recollection detected in non-human species

09.09.2004


BU neurobiologists find evidence hippocampus in rat brain triggers special form of memory



For millennia, the process of memory and remembering has intrigued scholars and scientists. In 350 B.C., Aristotle, in his seminal treatise on the subject, described it as having two forms: familiarity and recollection. Of these, he considered recollection to be a purely human condition. That tenet is now being challenged by researchers at Boston University.

Neurobiologists at Boston University’s Center for Memory and Brain have provided the first evidence that rats use recollection when recognizing items they have recently experienced. In addition, the researchers show that rodents’ capacity for recollection-like memory retrieval depends on the brain structure known as the hippocampus, the same structure believed to be involved in recollection in humans. Their findings are published in the September 9 issue of the journal Nature.


Although neuroimaging studies of hippocampal activity in normal individuals as well as studies of amnesia indicate the hippocampus could be crucial to recollection, definitive methods for assessing hippocampal activity in memory have largely remained out of reach.

The BU research team, led by Norbert Fortin, a research associate in the Laboratory of Cognitive Neurobiology at the Center for Memory and Brain, and including Howard Eichenbaum, Center director and professor and chairman of BU’s Department of Psychology, and Sean Wright, a former BU undergraduate, set out to better define the role of the hippocampus in the human recollection process. They approached this in a novel way -- by investigating the activity of the hippocampus in the rat brain. Their approach also meant that they had to think outside the conventions of the discipline and ask, "Do rats have a capacity for recollection?"

In humans, signal detection techniques have been used to distinguish memory responses triggered by familiarity, the general sense that a person or thing has been previously perceived, from those triggered by recollection, the sudden rush of detailed memory. The BU team chose to determine whether analyses related to this technique, known as receiver operating characteristic (ROC) curves, could be used to assess rat memory processes.

With familiarity, previous encounters are not recalled. For instance, if you encounter someone you know you’ve met, your sense of "knowing" that person may be weak or strong, but it does not include details of previous encounters. ROC analyses show that familiarity manifests itself as a continuous function reflecting the strength of a perceptual impression in memory.

Recollection, by comparison, is expressed in an all-or-none fashion, triggered when a certain threshold of associative and contextual information has been achieved. It is a sudden, overwhelming rush of detailed memory, such as that which is experienced when you eventually recall the prior encounter with that familiar person.

The researchers devised a memory test that capitalized on rats’ highly developed sense of smell as well as instinctual foraging behavior. Initially, the rats explored a "list" of 10 common household odors (for example, cinnamon, oregano, coffee, chocolate), each mixed in ordinary sand that hid a buried food reward.

Following a 30-minute retention period, they were presented with a series of 20 odors, the 10 "old" odors plus 10 "new" ones. In addition, the animal’s decisions were intentionally biased by varying the difficulty of responding to each odor and by varying the food "payoffs" for correct identification of old and new odors.

The test design allowed the researchers to measure the ratio of correct and false odor identifications across a range of bias conditions, generating the ROC curve. The shape of this curve indicated the existence of both an all-or-none threshold component and a continuous-strength component. The curves produced are very similar to those observed in the ROCs of humans, indicating the existence of recollection and familiarity in support of recognition performance.

The researchers divided the rats into two comparable groups: a group in which the hippocampus was removed and a control group. When the rats were again tested, the results were compelling -- recollection was lost in rats without a hippocampus but familiarity remained intact. A further test of the controls showed that, in the normal forgetting process, familiarity fades quickly while recollection persists, precisely the opposite pattern observed in the animals without a hippocampus.

This combination of results provides strong evidence that animals, contrary to Aristotle’s contention, exhibit recollection as well as familiarity. Furthermore, the findings point to the hippocampus as critical to the process of recollection.

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>