Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic hypothesis for the cause of autism

08.09.2004


A mixed epigenetic and genetic and mixed de novo and inherited model may explain most cases of autism



Researchers have proposed a new hypothesis on the cause of autism, suggesting a mixed epigenetic and genetic and mixed de novo and inherited (MEGDI) model. Their hypothesis, and evidence to support it, will be published September 8, 2004 in the online edition of the American Journal of Medical Genetics Part A, and will be available via Wiley InterScience at http://www.interscience.wiley.com/journal/ajmg.

The role of genetics in autism is believed to be significant because twin studies have found that identical twins, who have the same DNA, are much more likely to share the diagnosis than fraternal twins. However, experts have not yet identified the specific genetic components related to autism, and many experts believe that multiple genes are involved.


Researchers, led by Yong-hui Jiang of Baylor College of Medicine in Houston, propose that most cases of autism can be explained by a complex model for genetic malfunction that may or may not include an altered DNA sequence. Where the DNA sequence is intact, the researchers believe that gene expression could be faulty. They suggest that some of these genetic factors are inherited, and others occur de novo in genes of the autistic person. In this study, they formulate a five-part hypothesis on the cause of autism:

Based on the evidence of parent-of-origin effects, they propose that there is a major epigenetic (related to gene expression, not sequence) component in the etiology of autism involving genetic imprinting. They suggest that epigenetic and genetic factors (both de novo and inherited) cause autism through dysregulation of two or more principal genes, one of which maps within chromosomes 15q11-q13, with the Angelman gene encoding E6-AP ubiquitin-protein ligase (UBE3A) being the strongest candidate in this region

They propose that the dysregulation of UBE3A involves some combination of overexpression, gene silencing, or misexpression of the three potential isoforms of E6-AP. They believe twin data on autism are best explained by de novo defects (epigenetic or genetic) arising in germ cells or in the embryo prior to twinning. They speculate that one or more additional genes whose function affects the role of UBE3A likely participate with the Angelman gene in an oligogenic inheritance model.

The researchers reviewed available evidence and conducted their own investigations to test elements of their hypothesis. For example, from evidence that maternal, but not paternal, inheritance of extra material from chromosome 15 causes autism in a small fraction of cases, they suggest that this chromosome, and more specifically, the gene for Angelman syndrome in this region, plays a greater role in autism than is currently appreciated. They also noted the difference in the effects of a gene depending on which parent transmits it, which strongly suggests an epigenetic effect called genomic imprinting.

The authors do not argue that their data prove the components of the oligogenic hypothesis. They say, rather, that the model is generally compatible with the data presented, it represents some fresh perspectives for autism, and it can be tested in a number of ways. "We believe that this model is highly likely to apply to some small fraction of autism cases," say the authors, "but more importantly and more speculatively, we propose that it will explain the majority of cases of autism."

The oligogenic model does not entirely rule an environmental role in autism. "The epigenetic component of the oligogenic model can be considered in the context of possible environmental factors affecting the risk of de novo imprinting defects. Non-genetic factors could affect the risk for an epigenetic form of autism," the authors conclude.

If the MEGDI model is correct for autism, it could also be relevant to other disorders, such as schizophrenia or bipolar mood disorder that clearly have a genetic component but have resisted understanding despite the completion of the human genome project.

David Greenberg | EurekAlert!
Further information:
http://www.wiley.com
http://www.interscience.wiley.com/journal/ajmg

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>