Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New genetic hypothesis for the cause of autism


A mixed epigenetic and genetic and mixed de novo and inherited model may explain most cases of autism

Researchers have proposed a new hypothesis on the cause of autism, suggesting a mixed epigenetic and genetic and mixed de novo and inherited (MEGDI) model. Their hypothesis, and evidence to support it, will be published September 8, 2004 in the online edition of the American Journal of Medical Genetics Part A, and will be available via Wiley InterScience at

The role of genetics in autism is believed to be significant because twin studies have found that identical twins, who have the same DNA, are much more likely to share the diagnosis than fraternal twins. However, experts have not yet identified the specific genetic components related to autism, and many experts believe that multiple genes are involved.

Researchers, led by Yong-hui Jiang of Baylor College of Medicine in Houston, propose that most cases of autism can be explained by a complex model for genetic malfunction that may or may not include an altered DNA sequence. Where the DNA sequence is intact, the researchers believe that gene expression could be faulty. They suggest that some of these genetic factors are inherited, and others occur de novo in genes of the autistic person. In this study, they formulate a five-part hypothesis on the cause of autism:

Based on the evidence of parent-of-origin effects, they propose that there is a major epigenetic (related to gene expression, not sequence) component in the etiology of autism involving genetic imprinting. They suggest that epigenetic and genetic factors (both de novo and inherited) cause autism through dysregulation of two or more principal genes, one of which maps within chromosomes 15q11-q13, with the Angelman gene encoding E6-AP ubiquitin-protein ligase (UBE3A) being the strongest candidate in this region

They propose that the dysregulation of UBE3A involves some combination of overexpression, gene silencing, or misexpression of the three potential isoforms of E6-AP. They believe twin data on autism are best explained by de novo defects (epigenetic or genetic) arising in germ cells or in the embryo prior to twinning. They speculate that one or more additional genes whose function affects the role of UBE3A likely participate with the Angelman gene in an oligogenic inheritance model.

The researchers reviewed available evidence and conducted their own investigations to test elements of their hypothesis. For example, from evidence that maternal, but not paternal, inheritance of extra material from chromosome 15 causes autism in a small fraction of cases, they suggest that this chromosome, and more specifically, the gene for Angelman syndrome in this region, plays a greater role in autism than is currently appreciated. They also noted the difference in the effects of a gene depending on which parent transmits it, which strongly suggests an epigenetic effect called genomic imprinting.

The authors do not argue that their data prove the components of the oligogenic hypothesis. They say, rather, that the model is generally compatible with the data presented, it represents some fresh perspectives for autism, and it can be tested in a number of ways. "We believe that this model is highly likely to apply to some small fraction of autism cases," say the authors, "but more importantly and more speculatively, we propose that it will explain the majority of cases of autism."

The oligogenic model does not entirely rule an environmental role in autism. "The epigenetic component of the oligogenic model can be considered in the context of possible environmental factors affecting the risk of de novo imprinting defects. Non-genetic factors could affect the risk for an epigenetic form of autism," the authors conclude.

If the MEGDI model is correct for autism, it could also be relevant to other disorders, such as schizophrenia or bipolar mood disorder that clearly have a genetic component but have resisted understanding despite the completion of the human genome project.

David Greenberg | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>