Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel gene therapy for bladder cancer shows strong results in animal studies

08.09.2004


Novel Gene Therapy for Bladder Cancer Shows Strong Results in Animal Studies HOUSTON - Gene therapy that causes the bladder to act like a "bioreactor" to produce and secrete the anti-cancer agent interferon-alpha has shown dramatic benefits in preclinical tests, say researchers at The University of Texas M. D. Anderson Cancer Center.



The researchers say their findings, published in the September issue of Molecular Therapy, suggest this gene therapy strategy holds much promise for treating aggressive human superficial bladder cancer and that a clinical trial is being planned.

Human bladder tumors growing in experimental mice substantially decreased in size after two treatments with novel gene-based therapy. There was little or no evidence of cancer cells remaining in the bladder in many of the mice after treatment. Also, every kind of bladder cancer cell line tested in the laboratory responded, even cells known to be resistant to the interferon-alpha protein. "Of course these results have been achieved in mice, not humans, but they are very exciting," says the lead investigator William Benedict, M.D., professor in the Department of Genitourinary Medical Oncology. "I have never seen a potential therapy for superficial bladder cancer that could produce such marked regression of tumors within the bladder."


Bladder cancer is the fifth leading U.S. cancer, and "superficial" bladder cancer - cancer confined to the lining of the bladder wall - is the most common type, with more than 45,000 new cases each year. Although some patients with this cancer can be cured with the standard biologic therapy, the use of BCG, tumors will reappear in about half of patients, and up to 30 percent of them will die from disease. Because neither BCG nor chemotherapy can effectively prevent a significant percentage of superficial bladder cancer from becoming aggressive, researchers at M. D. Anderson have been studying novel gene therapy approaches to this clinical problem. Their work is being funded by a $13 million Specialized Programs of Research Excellence (SPORE) grant awarded to M. D. Anderson by the National Cancer Institute in 2001 - the only such federal SPORE dedicated to bladder research.

The bladder has long been thought to be ideal target for gene therapy, because it is easily accessible by catheter, and is largely a self-contained "bag-like" organ. Benedict and his team of researchers decided to look at use of gene therapy to deliver interferon-alpha, an immune system modulator which can improve a patient’s natural response against cancer as well as kill cancer cells directly. Interferon-alpha is commonly used as treatment in a number of cancers, such as several types of leukemias, lymphoma, melanoma, and kidney cancer. However, it has been observed that tumor cells can become resistant to the immune protein.

To investigate alternative ways to deliver interferon, the researchers teamed up with scientists from the San Diego biotechnology company Canji, Inc., which is affiliated with Schering-Plough Corporation, to evaluate recombinant adenoviruses encoding interferon-alpha (Ad-IFN_). These modified adenoviruses can produce high levels of interferon-alpha when they infect cells, but are engineered to prevent virus replication. The investigators combined Ad-IFN_ with an additional agent, Syn3, to enhance expression of IFN in the cells which line the inside of the bladder.

Mice that were growing human tumors in their bladders received two one-hour instillations directly into the bladder. The cells lining the inside of the bladder, both normal and cancerous, "took up" the Ad-IFN_, and a marked decrease in tumor size was seen. "This is a major finding since many human bladder cancer cell lines are resistant to the interferon-alpha protein, including the ones used in this study," says Benedict. "In addition, there was little apparent toxicity."

One of the key advances is that the virus was able to harness cells in the bladder to function as "biological factories, producing high local concentrations of interferon-alpha in the bladder over an extended time," he says. "That has never been seen before." "The degree of effectiveness of the Ad-IFN_/Syn3 therapy was a surprise to all of us," says Benedict. "We know that going from mouse to man is a crucial step, but if the therapy performs half as well in the clinic as in this preclinical study, we may well significantly advance the care of patients with bladder cancer."

Heather Russell | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>