Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel gene therapy for bladder cancer shows strong results in animal studies

08.09.2004


Novel Gene Therapy for Bladder Cancer Shows Strong Results in Animal Studies HOUSTON - Gene therapy that causes the bladder to act like a "bioreactor" to produce and secrete the anti-cancer agent interferon-alpha has shown dramatic benefits in preclinical tests, say researchers at The University of Texas M. D. Anderson Cancer Center.



The researchers say their findings, published in the September issue of Molecular Therapy, suggest this gene therapy strategy holds much promise for treating aggressive human superficial bladder cancer and that a clinical trial is being planned.

Human bladder tumors growing in experimental mice substantially decreased in size after two treatments with novel gene-based therapy. There was little or no evidence of cancer cells remaining in the bladder in many of the mice after treatment. Also, every kind of bladder cancer cell line tested in the laboratory responded, even cells known to be resistant to the interferon-alpha protein. "Of course these results have been achieved in mice, not humans, but they are very exciting," says the lead investigator William Benedict, M.D., professor in the Department of Genitourinary Medical Oncology. "I have never seen a potential therapy for superficial bladder cancer that could produce such marked regression of tumors within the bladder."


Bladder cancer is the fifth leading U.S. cancer, and "superficial" bladder cancer - cancer confined to the lining of the bladder wall - is the most common type, with more than 45,000 new cases each year. Although some patients with this cancer can be cured with the standard biologic therapy, the use of BCG, tumors will reappear in about half of patients, and up to 30 percent of them will die from disease. Because neither BCG nor chemotherapy can effectively prevent a significant percentage of superficial bladder cancer from becoming aggressive, researchers at M. D. Anderson have been studying novel gene therapy approaches to this clinical problem. Their work is being funded by a $13 million Specialized Programs of Research Excellence (SPORE) grant awarded to M. D. Anderson by the National Cancer Institute in 2001 - the only such federal SPORE dedicated to bladder research.

The bladder has long been thought to be ideal target for gene therapy, because it is easily accessible by catheter, and is largely a self-contained "bag-like" organ. Benedict and his team of researchers decided to look at use of gene therapy to deliver interferon-alpha, an immune system modulator which can improve a patient’s natural response against cancer as well as kill cancer cells directly. Interferon-alpha is commonly used as treatment in a number of cancers, such as several types of leukemias, lymphoma, melanoma, and kidney cancer. However, it has been observed that tumor cells can become resistant to the immune protein.

To investigate alternative ways to deliver interferon, the researchers teamed up with scientists from the San Diego biotechnology company Canji, Inc., which is affiliated with Schering-Plough Corporation, to evaluate recombinant adenoviruses encoding interferon-alpha (Ad-IFN_). These modified adenoviruses can produce high levels of interferon-alpha when they infect cells, but are engineered to prevent virus replication. The investigators combined Ad-IFN_ with an additional agent, Syn3, to enhance expression of IFN in the cells which line the inside of the bladder.

Mice that were growing human tumors in their bladders received two one-hour instillations directly into the bladder. The cells lining the inside of the bladder, both normal and cancerous, "took up" the Ad-IFN_, and a marked decrease in tumor size was seen. "This is a major finding since many human bladder cancer cell lines are resistant to the interferon-alpha protein, including the ones used in this study," says Benedict. "In addition, there was little apparent toxicity."

One of the key advances is that the virus was able to harness cells in the bladder to function as "biological factories, producing high local concentrations of interferon-alpha in the bladder over an extended time," he says. "That has never been seen before." "The degree of effectiveness of the Ad-IFN_/Syn3 therapy was a surprise to all of us," says Benedict. "We know that going from mouse to man is a crucial step, but if the therapy performs half as well in the clinic as in this preclinical study, we may well significantly advance the care of patients with bladder cancer."

Heather Russell | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>