Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossils reveal direct link between global warming and genetic diversity in wildlife

08.09.2004


For the first time, scientists have found a direct relationship between global warming and the evolution of contemporary wildlife. A research team led by Stanford University biologist Elizabeth A. Hadly published its findings in the Sept. 7 online edition of the journal PloS Biology.



"We think we know a lot about how animals might respond to global warming, but we really have very little idea about their actual genetic response to environmental change," said Hadly, an assistant professor of biological sciences at Stanford.

In the study, she and her colleagues conducted a genetic analysis of two species of rodents commonly found in Wyoming’s Yellowstone National Park – the montane vole (Microtus montanus) and the northern pocket gopher (Thomomys talpoides). The researchers collected DNA from living animals and from the teeth of fossilized specimens whose remains were buried in Lamar Cave, a remote site near the northeast entrance to the park. "The deposit in the cave is about nine yards deep and it took me seven years to excavate and identify the fossils," Hadly said. "It contains hundreds of thousands of bones and represents a continuous fossil record dating back 3,000 years. This timescale allows us to really investigate microevolution in a natural environment, the way you’d investigate it in a laboratory with something that has a much quicker generational timeline, such as bacteria or fruit flies."


Climate change and genetics

For the experiment, the research team compared DNA from voles and pocket gophers living near Lamar Cave with ancient DNA from fossilized rodents that inhabited the area at different times since 1000 B.C. The researchers were particularly interested in animals that were alive during two recent climatic events – the Medieval Warm Period (850-1350 A.D.), when the Northern Hemisphere experienced a slight warming trend; and the Little Ice Age (1350-1950), when the hemisphere cooled.

Since voles and pocket gophers prefer relatively wet grasslands, the scientists expected to see a decline in the population of both species during the Medieval Warm Period when their habitats dried up, and an increase during the Little Ice Age when the climate was wetter.

That prediction was confirmed by an analysis of fossil abundance in Lamar Cave, which revealed a 40 percent drop in the vole population during the warmer period, along with a 50 percent decline in the number of pocket gophers. As expected, fossil abundance for both species rose dramatically during the Little Ice Age as precipitation levels increased. These findings established a direct correlation between climate change and population size, but how did individual voles and pocket gophers respond genetically to these episodes of global warming and cooling?

Earlier studies have shown that, when an isolated population shrinks, inbreeding increases. As a result, surviving offspring end up with similar DNA. Over time, this lack of genetic diversity can jeopardize the entire population, because each individual inherits the same vulnerability to diseases and other external threats. "When you decrease population size, you have the potential of eliminating much genetic diversity," Hadly explained. "That’s what happened to pocket gophers during the Medieval Warm Period. We found that they underwent a population size reduction and a decline in genetic diversity, which is what you would predict."

But voles had a different response to medieval warming. "They didn’t show any reduction in genetic diversity, even though they did show a reduction in population size," Hadly said. That’s because voles routinely look for mates from other colonies. "Voles move around," Hadly noted. "They disperse quite freely, and that actually results in an elevation of genetic diversity during the time that their population sizes are undergoing reduction. Pocket gophers, on the other hand, are subterranean rodents. They dig underground burrows that are very energetically expensive to build, and they kind of stick in one place."

Subtle message

These results have important implications for wildlife biology and conservation, Hadly observed. "There’s a subtle message in this paper about the potential influence of warming on evolution," she said. "Voles show an influx of new genes and genetic diversity as their population declines, which means they’re connected to other populations. But gophers haven’t really recovered from the Medieval Warm Period, which ended less than 1,000 years ago. That means gophers are not getting any fresh, new genes from somewhere outside because they’re isolated."

While previous studies have shown that interbreeding usually occurs among large populations of animals, "this study shows that gene flow is occurring when population sizes are low," Hadly said. "So the snapshot we have today about how populations are connected may not be how it actually persists through time."

The study also has implications for wildlife managers in the greater Yellowstone ecosystem who are trying to maintain genetically diverse populations of elk, bison and other mammals. "The landscape of Yellowstone – arguably one of the largest relatively intact temperate zone ecosystems in the world – is really chopped up and isolated, and there are fewer connections between populations," Hadly explained. "They really might not have anyplace to go because of development or habitat loss, and this has the potential to be exacerbated during global warming."

She noted that the methods developed for the study offer wildlife biologists a unique approach to understanding the long-range effects of climate change on genetics. "In looking at wild organisms in nature, I don’t really know of another study like this," she said. "No one has really looked specifically at how the environment has influenced genes over a 3,000-year timescale. And our expectation is that other species will also show genetic responses to warming. Whether these effects are reversible may have to do with life history and how connected populations are, and for many species that remains to be seen."

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>