Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossils reveal direct link between global warming and genetic diversity in wildlife

08.09.2004


For the first time, scientists have found a direct relationship between global warming and the evolution of contemporary wildlife. A research team led by Stanford University biologist Elizabeth A. Hadly published its findings in the Sept. 7 online edition of the journal PloS Biology.



"We think we know a lot about how animals might respond to global warming, but we really have very little idea about their actual genetic response to environmental change," said Hadly, an assistant professor of biological sciences at Stanford.

In the study, she and her colleagues conducted a genetic analysis of two species of rodents commonly found in Wyoming’s Yellowstone National Park – the montane vole (Microtus montanus) and the northern pocket gopher (Thomomys talpoides). The researchers collected DNA from living animals and from the teeth of fossilized specimens whose remains were buried in Lamar Cave, a remote site near the northeast entrance to the park. "The deposit in the cave is about nine yards deep and it took me seven years to excavate and identify the fossils," Hadly said. "It contains hundreds of thousands of bones and represents a continuous fossil record dating back 3,000 years. This timescale allows us to really investigate microevolution in a natural environment, the way you’d investigate it in a laboratory with something that has a much quicker generational timeline, such as bacteria or fruit flies."


Climate change and genetics

For the experiment, the research team compared DNA from voles and pocket gophers living near Lamar Cave with ancient DNA from fossilized rodents that inhabited the area at different times since 1000 B.C. The researchers were particularly interested in animals that were alive during two recent climatic events – the Medieval Warm Period (850-1350 A.D.), when the Northern Hemisphere experienced a slight warming trend; and the Little Ice Age (1350-1950), when the hemisphere cooled.

Since voles and pocket gophers prefer relatively wet grasslands, the scientists expected to see a decline in the population of both species during the Medieval Warm Period when their habitats dried up, and an increase during the Little Ice Age when the climate was wetter.

That prediction was confirmed by an analysis of fossil abundance in Lamar Cave, which revealed a 40 percent drop in the vole population during the warmer period, along with a 50 percent decline in the number of pocket gophers. As expected, fossil abundance for both species rose dramatically during the Little Ice Age as precipitation levels increased. These findings established a direct correlation between climate change and population size, but how did individual voles and pocket gophers respond genetically to these episodes of global warming and cooling?

Earlier studies have shown that, when an isolated population shrinks, inbreeding increases. As a result, surviving offspring end up with similar DNA. Over time, this lack of genetic diversity can jeopardize the entire population, because each individual inherits the same vulnerability to diseases and other external threats. "When you decrease population size, you have the potential of eliminating much genetic diversity," Hadly explained. "That’s what happened to pocket gophers during the Medieval Warm Period. We found that they underwent a population size reduction and a decline in genetic diversity, which is what you would predict."

But voles had a different response to medieval warming. "They didn’t show any reduction in genetic diversity, even though they did show a reduction in population size," Hadly said. That’s because voles routinely look for mates from other colonies. "Voles move around," Hadly noted. "They disperse quite freely, and that actually results in an elevation of genetic diversity during the time that their population sizes are undergoing reduction. Pocket gophers, on the other hand, are subterranean rodents. They dig underground burrows that are very energetically expensive to build, and they kind of stick in one place."

Subtle message

These results have important implications for wildlife biology and conservation, Hadly observed. "There’s a subtle message in this paper about the potential influence of warming on evolution," she said. "Voles show an influx of new genes and genetic diversity as their population declines, which means they’re connected to other populations. But gophers haven’t really recovered from the Medieval Warm Period, which ended less than 1,000 years ago. That means gophers are not getting any fresh, new genes from somewhere outside because they’re isolated."

While previous studies have shown that interbreeding usually occurs among large populations of animals, "this study shows that gene flow is occurring when population sizes are low," Hadly said. "So the snapshot we have today about how populations are connected may not be how it actually persists through time."

The study also has implications for wildlife managers in the greater Yellowstone ecosystem who are trying to maintain genetically diverse populations of elk, bison and other mammals. "The landscape of Yellowstone – arguably one of the largest relatively intact temperate zone ecosystems in the world – is really chopped up and isolated, and there are fewer connections between populations," Hadly explained. "They really might not have anyplace to go because of development or habitat loss, and this has the potential to be exacerbated during global warming."

She noted that the methods developed for the study offer wildlife biologists a unique approach to understanding the long-range effects of climate change on genetics. "In looking at wild organisms in nature, I don’t really know of another study like this," she said. "No one has really looked specifically at how the environment has influenced genes over a 3,000-year timescale. And our expectation is that other species will also show genetic responses to warming. Whether these effects are reversible may have to do with life history and how connected populations are, and for many species that remains to be seen."

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity
28.06.2017 | Technische Universität München

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>