Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The clue of genomic instability in breast cancer

07.09.2004


New research has shown, using human tissue biopsies - a hypothesis that until now could only be argued indirectly using cell cultures – that the significant increase in genomic "disorder" that is associated with breast cancer occurs in the transition between the typical hyperplasia and the in situ carcinoma, coinciding with a reduction to a critical minimum in the cell chromosome terminations (known as telomeres). This process of critical reduction, occurring due to the accumulation of cell divisions, causes problems in the cell division process, giving rise to cells with an abnormal genetic content. These cells are normally detected and eliminated from the organism thanks to a complex control and defence mechanism, but the activation of a protein known as telomerase is capable of short-circuiting these defence mechanisms and perpetuate these cells with abnormal genetic content, facilitating the development of the cancer.



The research work was carried out in the prestigious Lawrence Berkeley National Laboratory of the US Department of Energy at Berkeley (California) in collaboration with the University of California in San Francisco.

The contribution of the Spanish scientists Carlos Ortiz de Solórzano and Enrique García Rodríguez to the research was the development of programmes for the analysis of images from confocal 3D microscopy by which each cell can be observed separately and the amount of DNA in each cell nucleus determined. The number of de copies of genes involved in the development of the cancer and the number and length of the telomeres of these cells can be thus determined. This study would not have been possible without the 3D scientific visualisation programmes. The task group at the Lawrence Berkeley National Laboratory was directed by Dr. Carlos Ortiz de Solórzano, who leads a microscopy and biomedical image analysis group.


The work published by the latest number of Nature Genetics, one of the scientific journals with most impact in the field of biomedical research and the magazine of reference for genomic investigation, suggests that persons with benign tumours and who have a greater risk of developing cancer could be identified at an early stage by measuring telomerase activity; it opens the doors to the development of new therapeutic agents that selectively eliminate the tumorous cells, avoiding the reactivation of the telomerase enzyme in cells with an abnormal genetic content, or eliminate cells where the enzyme has been reactivated.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>