Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The clue of genomic instability in breast cancer

07.09.2004


New research has shown, using human tissue biopsies - a hypothesis that until now could only be argued indirectly using cell cultures – that the significant increase in genomic "disorder" that is associated with breast cancer occurs in the transition between the typical hyperplasia and the in situ carcinoma, coinciding with a reduction to a critical minimum in the cell chromosome terminations (known as telomeres). This process of critical reduction, occurring due to the accumulation of cell divisions, causes problems in the cell division process, giving rise to cells with an abnormal genetic content. These cells are normally detected and eliminated from the organism thanks to a complex control and defence mechanism, but the activation of a protein known as telomerase is capable of short-circuiting these defence mechanisms and perpetuate these cells with abnormal genetic content, facilitating the development of the cancer.



The research work was carried out in the prestigious Lawrence Berkeley National Laboratory of the US Department of Energy at Berkeley (California) in collaboration with the University of California in San Francisco.

The contribution of the Spanish scientists Carlos Ortiz de Solórzano and Enrique García Rodríguez to the research was the development of programmes for the analysis of images from confocal 3D microscopy by which each cell can be observed separately and the amount of DNA in each cell nucleus determined. The number of de copies of genes involved in the development of the cancer and the number and length of the telomeres of these cells can be thus determined. This study would not have been possible without the 3D scientific visualisation programmes. The task group at the Lawrence Berkeley National Laboratory was directed by Dr. Carlos Ortiz de Solórzano, who leads a microscopy and biomedical image analysis group.


The work published by the latest number of Nature Genetics, one of the scientific journals with most impact in the field of biomedical research and the magazine of reference for genomic investigation, suggests that persons with benign tumours and who have a greater risk of developing cancer could be identified at an early stage by measuring telomerase activity; it opens the doors to the development of new therapeutic agents that selectively eliminate the tumorous cells, avoiding the reactivation of the telomerase enzyme in cells with an abnormal genetic content, or eliminate cells where the enzyme has been reactivated.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>