Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic map of important tree genes outlined

07.09.2004


Researchers in Sweden and the United States have publicly released a new database of many of the most important genes in a tree genome. This collection of genes, which includes a large proportion of those expressed during tree growth, is among the best for any plant species.



"This is an important fundamental step towards doing the type of genetic and biotechnology research with trees that we’ve been able to do with only the most scientifically well-known plants," said Steven Strauss, a professor of forest science at Oregon State University.

Strauss is one of the co-authors on a paper that was just published on this advance in a professional journal, Proceedings of the National Academy of Sciences. "There’s still an enormous amount we don’t know about the genetic function of trees at the most basic levels," Strauss said. "But advances such as this will narrow the gap between the scientific research we can undertake with trees and the studies that are possible with traditional model plant species, such as rice, corn, and Arabidopsis - a tiny plant in the mustard family that is the lab rat for all plants."


The database just announced, which was produced by a research group in Sweden with collaboration by researchers at OSU, describes about 102,000 sequences of the most commonly expressed genes in the genus "Populus," which includes cottonwoods and aspens. In living organisms, the genes which are "expressed" are only a fraction of the total DNA in cells. But they are most important to determining an animal or plant’s function – in the case of a tree, forming its bark, leaves, roots and wood, and enabling it to respond to environmental stresses.

The study also compared many of these gene sequences to those found in Arabidopsis, and found that nearly all the genes were functionally common between the two, even though they have been separated by about 100 million years of evolution and look completely different. Arabidopsis is the most frequently used plant in the world for basic genetic research on plant structure and function, and being able to compare its genetics to those of a tree will greatly speed genetic research with trees, Strauss said.

It also indicates that the large majority of transfers of genes between widely separated plant species via genetic engineering would not produce novel characteristics, but simply modify existing genetic characteristics, he said. Just as Arabidopsis is the most commonly studied plant in the world with respect to molecular genetics, poplar is the most commonly studied tree, Strauss said.

Trees, which are among the most ancient of plant life forms, also have a very complex genetic makeup that so far has resisted many of the traditional genetic research techniques that are used with other plants which have short life cycles.

Knowing so many genes in a tree, and being able to modify them easily in poplars with asexual biotechnology methods such as gene transfer, provides a tremendous advance for basic research in trees. Even if regulations continue to present strong obstacles to use of gene transfer methods for commercial purposes, it can still be used to learn a great deal about tree biology, Strauss said.

The new study, along with advances that are expected soon to describe the entire Populus genome DNA sequence, will help scientists find specific genes in a matter of minutes using computational approaches. Such discoveries would have taken decades or centuries prior to these databases, Strauss said. "Once you know a lot of gene sequences and can study thousands of genes at a time, you can start to really explore how trees might respond on a basic genetic level to such stresses as drought, exposure to cold, and pest attack," Strauss said.

Using the expression of thousands of genes as "metabolic fingerprints," a method that is becoming routine with the advent of gene chips, researchers can also make major strides in understanding the physiological changes that take place as trees age, Strauss said. "Do very old trees effectively oxidize over time, like humans do?" he said. "Or can they renew their cellular integrity continuously despite living for centuries to millennia? These are the kinds of questions we can start to ask and answer, in ways that we never could before."

Ultimately, the researchers believe that a more comprehensive understanding of tree genetics should allow controlled gene transfer, both as a research and biotechnology tool. It could take the type of conventional plant breeding that has been done with trees for centuries but control the process more scientifically, modifying the expression of specific natural or native genes for desired purposes.

For example, the structure and chemical makeup of trees could be modified for a variety of uses: bioremediation to eliminate pollutants from soil, or the production of renewable feedstocks for bioenergy and fiber products, including paper and chemicals. This process, where only native gene functions are modified, is quite different from transferring novel proteins across vastly different kinds of species, which is a large part of the unease about the use of genetically engineered crops in agriculture, Strauss said. The researchers in their new report pointed to trees as "a life form of paramount importance for terrestrial ecosystems and human societies," because of their ecological dominance and provision of so much energy and industrial materials for human societies.

"Arabidopsis is still the plant model that will first give us the basic answers to how plants function," Strauss said. "But it is very exciting to see the knowledge it is yielding being applied to trees, such an important and difficult life form. For many environmental and economic reasons trees are one group of plants that we want to be able to breed more scientifically, and we’re now getting closer to the day we can really do that."

Steven Strauss | EurekAlert!
Further information:
http://www.orst.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>