Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic map of important tree genes outlined


Researchers in Sweden and the United States have publicly released a new database of many of the most important genes in a tree genome. This collection of genes, which includes a large proportion of those expressed during tree growth, is among the best for any plant species.

"This is an important fundamental step towards doing the type of genetic and biotechnology research with trees that we’ve been able to do with only the most scientifically well-known plants," said Steven Strauss, a professor of forest science at Oregon State University.

Strauss is one of the co-authors on a paper that was just published on this advance in a professional journal, Proceedings of the National Academy of Sciences. "There’s still an enormous amount we don’t know about the genetic function of trees at the most basic levels," Strauss said. "But advances such as this will narrow the gap between the scientific research we can undertake with trees and the studies that are possible with traditional model plant species, such as rice, corn, and Arabidopsis - a tiny plant in the mustard family that is the lab rat for all plants."

The database just announced, which was produced by a research group in Sweden with collaboration by researchers at OSU, describes about 102,000 sequences of the most commonly expressed genes in the genus "Populus," which includes cottonwoods and aspens. In living organisms, the genes which are "expressed" are only a fraction of the total DNA in cells. But they are most important to determining an animal or plant’s function – in the case of a tree, forming its bark, leaves, roots and wood, and enabling it to respond to environmental stresses.

The study also compared many of these gene sequences to those found in Arabidopsis, and found that nearly all the genes were functionally common between the two, even though they have been separated by about 100 million years of evolution and look completely different. Arabidopsis is the most frequently used plant in the world for basic genetic research on plant structure and function, and being able to compare its genetics to those of a tree will greatly speed genetic research with trees, Strauss said.

It also indicates that the large majority of transfers of genes between widely separated plant species via genetic engineering would not produce novel characteristics, but simply modify existing genetic characteristics, he said. Just as Arabidopsis is the most commonly studied plant in the world with respect to molecular genetics, poplar is the most commonly studied tree, Strauss said.

Trees, which are among the most ancient of plant life forms, also have a very complex genetic makeup that so far has resisted many of the traditional genetic research techniques that are used with other plants which have short life cycles.

Knowing so many genes in a tree, and being able to modify them easily in poplars with asexual biotechnology methods such as gene transfer, provides a tremendous advance for basic research in trees. Even if regulations continue to present strong obstacles to use of gene transfer methods for commercial purposes, it can still be used to learn a great deal about tree biology, Strauss said.

The new study, along with advances that are expected soon to describe the entire Populus genome DNA sequence, will help scientists find specific genes in a matter of minutes using computational approaches. Such discoveries would have taken decades or centuries prior to these databases, Strauss said. "Once you know a lot of gene sequences and can study thousands of genes at a time, you can start to really explore how trees might respond on a basic genetic level to such stresses as drought, exposure to cold, and pest attack," Strauss said.

Using the expression of thousands of genes as "metabolic fingerprints," a method that is becoming routine with the advent of gene chips, researchers can also make major strides in understanding the physiological changes that take place as trees age, Strauss said. "Do very old trees effectively oxidize over time, like humans do?" he said. "Or can they renew their cellular integrity continuously despite living for centuries to millennia? These are the kinds of questions we can start to ask and answer, in ways that we never could before."

Ultimately, the researchers believe that a more comprehensive understanding of tree genetics should allow controlled gene transfer, both as a research and biotechnology tool. It could take the type of conventional plant breeding that has been done with trees for centuries but control the process more scientifically, modifying the expression of specific natural or native genes for desired purposes.

For example, the structure and chemical makeup of trees could be modified for a variety of uses: bioremediation to eliminate pollutants from soil, or the production of renewable feedstocks for bioenergy and fiber products, including paper and chemicals. This process, where only native gene functions are modified, is quite different from transferring novel proteins across vastly different kinds of species, which is a large part of the unease about the use of genetically engineered crops in agriculture, Strauss said. The researchers in their new report pointed to trees as "a life form of paramount importance for terrestrial ecosystems and human societies," because of their ecological dominance and provision of so much energy and industrial materials for human societies.

"Arabidopsis is still the plant model that will first give us the basic answers to how plants function," Strauss said. "But it is very exciting to see the knowledge it is yielding being applied to trees, such an important and difficult life form. For many environmental and economic reasons trees are one group of plants that we want to be able to breed more scientifically, and we’re now getting closer to the day we can really do that."

Steven Strauss | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>