Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silencing bacteria could stop infections and save lives


Stopping bacteria from talking to each other could help prevent serious infections say scientists from Aberdeen, in new research presented Monday, 06 September 2004 at the Society for General Microbiology’s 155th Meeting at Trinity College Dublin.

“It is war out there. Bacteria need to wait until there are enough of them to attack us, otherwise they just get beaten off by our skin, the antibodies which patrol our blood, and our other defences,” says Professor Andrew Porter from Aberdeen University spin-out company Haptogen. “They use tiny molecules called haptens to talk to each other, letting each other know how many of them there are, much in the same way that we can smell things to sense what is going on in the world around us.”

“If we can block the actions of the haptens then we can fool the bacteria into thinking that there aren’t enough of them to attack us,” says Prof Porter. “The problem is that haptens are such tiny molecules that they don’t trigger our normal immune defences - they are so small they are invisible to our early warning radar.”

Infectious diseases are major killers - second only to heart diseases, infections cause a quarter of all the deaths in the world. Amongst other groups intensive care patients, cystic fibrosis patients and people suffering severe burns are particularly vulnerable. Now increases in world trade and travel mean that infectious diseases and antimicrobial-resistant strains of bacteria can spread rapidly between continents. Drug resistance, which is slow to reverse, costs lives, livelihoods and money, and threatens to undermine the effectiveness of many global health programmes.

The scientists believe that by targeting their signalling molecules instead of the bacteria themselves, they can avoid building up drug-resistant strains of bacteria. Haptens are used by bacteria to exchange information about numbers of bacteria, and to coordinate changes in their virulence just before they attack. Changing to their more dangerous state is costly for bacteria, and makes them more vulnerable to counter attack - in the same way that coming out from a defensive bunker to fire a weapon makes soldiers more vulnerable to enemy fire.

“If we can find a way of encouraging our bodies to produce antibodies which can wipe out these hapten signals, we can block the bacteria’s sensing and monitoring systems,” says Prof Porter. “Our early results suggest that we can make effective antibodies that not only stop the bacteria becoming more dangerous, they confuse communication so much that the bacteria commit suicide in their millions.”

The results so far from pre-clinical studies suggest that they have already found important prototype antibodies against the haptens. These can block the cell-to-cell signalling of Pseudomonas aeruginosa, a bacterium which particularly attacks the lungs of cystic fibrosis patients, transplant recipients and burns victims, killing one in three people with severe infections. This high death rate is partly due to the resistance that Pseudomonas bacteria have already built up to current antibiotics.

Faye Jones | alfa
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>