Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silencing bacteria could stop infections and save lives

07.09.2004


Stopping bacteria from talking to each other could help prevent serious infections say scientists from Aberdeen, in new research presented Monday, 06 September 2004 at the Society for General Microbiology’s 155th Meeting at Trinity College Dublin.



“It is war out there. Bacteria need to wait until there are enough of them to attack us, otherwise they just get beaten off by our skin, the antibodies which patrol our blood, and our other defences,” says Professor Andrew Porter from Aberdeen University spin-out company Haptogen. “They use tiny molecules called haptens to talk to each other, letting each other know how many of them there are, much in the same way that we can smell things to sense what is going on in the world around us.”

“If we can block the actions of the haptens then we can fool the bacteria into thinking that there aren’t enough of them to attack us,” says Prof Porter. “The problem is that haptens are such tiny molecules that they don’t trigger our normal immune defences - they are so small they are invisible to our early warning radar.”


Infectious diseases are major killers - second only to heart diseases, infections cause a quarter of all the deaths in the world. Amongst other groups intensive care patients, cystic fibrosis patients and people suffering severe burns are particularly vulnerable. Now increases in world trade and travel mean that infectious diseases and antimicrobial-resistant strains of bacteria can spread rapidly between continents. Drug resistance, which is slow to reverse, costs lives, livelihoods and money, and threatens to undermine the effectiveness of many global health programmes.

The scientists believe that by targeting their signalling molecules instead of the bacteria themselves, they can avoid building up drug-resistant strains of bacteria. Haptens are used by bacteria to exchange information about numbers of bacteria, and to coordinate changes in their virulence just before they attack. Changing to their more dangerous state is costly for bacteria, and makes them more vulnerable to counter attack - in the same way that coming out from a defensive bunker to fire a weapon makes soldiers more vulnerable to enemy fire.

“If we can find a way of encouraging our bodies to produce antibodies which can wipe out these hapten signals, we can block the bacteria’s sensing and monitoring systems,” says Prof Porter. “Our early results suggest that we can make effective antibodies that not only stop the bacteria becoming more dangerous, they confuse communication so much that the bacteria commit suicide in their millions.”

The results so far from pre-clinical studies suggest that they have already found important prototype antibodies against the haptens. These can block the cell-to-cell signalling of Pseudomonas aeruginosa, a bacterium which particularly attacks the lungs of cystic fibrosis patients, transplant recipients and burns victims, killing one in three people with severe infections. This high death rate is partly due to the resistance that Pseudomonas bacteria have already built up to current antibiotics.

Faye Jones | alfa
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>