Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intellectural Property Used to Create Scientific Software to Aid in Drug Design

06.09.2004


VeraChem LLC founders Drs. Michael Gilson, Michael Potter, and Hillary Gilson, using UMBI licensed intellectual property, are creating scientific software that provides expert users with tools for computer-aided drug discovery and molecular design. VeraChem’s recent first sale, a pre-release version of Vconf, is followed by the projected launch on September 8 of Vcharge, a new software product for computing molecular properties important in drug design. The official launch of Vconf is expected to follow later in 2004.

“Vcharge combines speed and accuracy in a unique software package that will be available for the Linux and Windows operating systems,” says Dr. Gilson, Chief Scientific Officer for VeraChem LLC and Professor at UMBI’s Center for Advanced Research in Biotechnology. “This product is just the first in a series that will bring advanced computational methods in an affordable and user-friendly format to experts in the pharmaceutical and biotechnology industries.”

“Vcharge is a tool for computer-aided drug design,” says Dr. Gilson. “It allows the designer to compute the atomic charges of a candidate drug molecule as a step in determining whether it will effectively bind a targeted protein. Most drugs work by binding tightly to a targeted protein molecule. For example, HIV protease inhibitors help patients by binding and blocking the function of a protein that the AIDS virus needs to survive and reproduce. Each atom of a protein carries a small electrical charge and, since opposite charges attract while like charges repel, it is important that the atoms of a drug molecule have charges which complement the targeted protein.”


In addition to Vcharge, the entrepreneurs at VeraChem have developed a proprietary software toolkit with a range of functionalities, including ligand-protein docking and scoring, powerful conformational search of candidate drug molecules, computation of atomic energies and forces, automatic generation of alternative resonance forms of drug-like compounds, and automatic detection of topological and 3d molecular symmetries. VeraChem also has developed a novel user-interface design that shortens the learning curve for high-end modeling technologies. These technologies will form the basis of a series of upcoming products.

“The creation of VeraChem, and the launch of its first niche market product, Vcharge, is a success for both UMBI and the principals of VeraChem, LLC,” says Dr. Jennie Hunter-Cevera, President of the University of Maryland Biotechnology Institute (UMBI). “Through VeraChem, UMBI licensed intellectual property has been put to good business use, enabling the creation of a marketable product that meets the needs of the scientific community, as well as furthering biotechnology research. Seasoned scientists, as well as those early on in their careers will be able to use this software to increase speed and accuracy. We are very proud of Dr. Gilson and the team of experts at VeraChem.”

For more information on Vcharge, or to place an order for this new scientific software, visit http://www.verachem.com. For more information on the Center for Advanced Research in Biotechnology, a cooperative venture with the National Institutes of Standards and Technology (NIST) and Montgomery County, Maryland, visit http://www.umbi.umd.edu and proceed to the About Us section.

| newswise
Further information:
http://www.umbi.umd.edu.
http://www.verachem.com

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>