Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow cells routinely help with wound healing

03.09.2004


’Wounds may not heal the way we thought they did’

Bone marrow produces cells that not only help fight infection, but also permanently heal wounds, according to research at the University of Washington. Previously, researchers had not known that bone marrow contributed to the development of new skin in wounds. The findings will be published in the Sept. 3 issue of Stem Cells.

"Wounds may not heal the way we thought they did," says Dr. Richard Ikeda, a biochemist at the National Institute of General Medical Sciences, one of the National Institutes of Health, which supported the work. "This study shows that bone marrow stem cells, in addition to cells from the surrounding tissue, may actually contribute to the healing process. If this is the case, it could lead to completely new ways of treating serious wounds."



When a body is wounded, the body immediately tries to form a clot in order to stop the bleeding. The seal is formed with the help of cells that circulate in your blood all the time and are on the spot immediately. The body also has an inflammatory response: signals direct white blood cells to the area of the wound. The white blood cells arrive to fight off foreign bacteria and infection. This inflammatory response is responsible for the red area around a wound. The inflammatory response goes away within a few days to a week, assuming there is no continued infection.

"Scientists have long assumed that once the inflammatory response concludes, the white blood cells mostly either then die or go into circulation in the bloodstream. We did not know, until now, that the bone marrow-derived cells go on to become a significant part of the new skin," said Dr. Frank Isik, professor of surgery at the University of Washington. "We’ve known that bone marrow cells are involved in wound healing and inflammation – now we have data that shows bone marrow cells are involved in normal skin maintenance, in maintaining the matrix environment and integrity of the skin."

Bone marrow has been studied for a number of purposes in recent years because it is rich in stem cells – cells that can go on to become many different kinds of cells. In order to conduct this research, Isik and colleagues obtained a strain of mice whose bodies glow green under fluorescent light. The researchers removed bone marrow from the mice and then performed a stem cell transplant into a genetically identical strain of normal mice, whose cells do not glow green. Afterward, only the bone marrow of the transplanted mice glowed green inside the bodies of the mice, allowing researchers to track the bone marrow cells throughout the body. Researchers found green cells throughout the body, but observed that the highest concentration of bone marrow cells was in normal skin.

That was a surprise. People have known for awhile that there are a few white blood cells in the skin – that’s how people come down with contact dermatitis. Contact dermatitis happens when someone develops an inflammatory reaction to a substance that touches his or her skin. However, the white blood cells involved in contact dermatitis express a certain protein, CD45. The new cells identified in the transplanted mice did not produce that protein, and do not seem to be implicated in contact dermatitis. Researchers found that even after six weeks, long after the infection-fighting role seems to be over, the bone marrow-derived cells cluster within the healing area of a wound.

The researchers ran these skin cells through a flow cytometer to separate them into green and non-green fractions and found only the green cells in the skin produced collagen type III, which is one of the two most abundant collagens in skin. The native skin cells produced only collagen type I. Researchers do not know why bone marrow would produce collagen III, which is typically found in connective tissues such as skin.

"What we have here is a new cell population that was not previously recognized," Isik said. "The bone marrow cells help form the matrix of the skin. Collagen is what gives your skin its tough nature. It’s expandable, and it’s tough. You cannot break your skin without a sharp object. The reason is because of the collagen content, a scaffolding that is very strong."

Walter Neary | EurekAlert!
Further information:
http://www.u.washington.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>